ImgCap / trainning.py
shredder-31's picture
Update trainning.py
a0a02a7 verified
import torch
import pickle
import string
import torch.nn.functional as F
import torch.nn as nn
import torchvision.models as models
def decoder(indices):
with open("vocab.pkl", 'rb') as f:
vocab = pickle.load(f)
tokens = [vocab.lookup_token(idx) for idx in indices]
words = []
current_word = []
for token in tokens:
if len(token) == 1 and token in string.ascii_lowercase:
current_word.append(token)
else:
if current_word:
words.append("".join(current_word))
current_word = []
words.append(token)
if current_word:
words.append(" "+"".join(current_word))
return "".join(words)
def beam_search_caption(model, images, vocab, decoder, device="cpu",
start_token="<sos>", end_token="<eos>",
beam_width=3, max_seq_length=100):
model.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
# Ensure batch_size is 1 for beam search (one image at a time)
if batch_size != 1:
raise ValueError("Beam search currently supports batch_size=1.")
cnn_features = model.cnn(images) # (B, 49, 2048)
h, c = model.lstm.init_hidden_state(batch_size)
word_input = torch.full((batch_size,), start_index, dtype=torch.long).to(device)
embeddings = model.lstm.embedding(word_input)
context, _ = model.lstm.attention(cnn_features, h[-1])
lstm_input = torch.cat([embeddings, context], dim=1).unsqueeze(1)
sequences = [([start_index], 0.0, lstm_input, (h, c))] # List of tuples: (sequence, score, input, state)
completed_sequences = []
for _ in range(max_seq_length):
all_candidates = []
for seq, score, lstm_input, (h,c) in sequences:
if seq[-1] == end_index:
completed_sequences.append((seq, score))
continue
lstm_out, (h_new, c_new) = model.lstm.lstm(lstm_input, (h, c)) # lstm_out: (1, 1, 1024)
output = model.lstm.fc(lstm_out.squeeze(1)) # Shape: (1, vocab_size)
log_probs = F.log_softmax(output, dim=1) # Shape: (1, vocab_size)
top_log_probs, top_indices = log_probs.topk(beam_width, dim=1) # Each of shape: (1, beam_width)
for i in range(beam_width):
token = top_indices[0, i].item()
token_log_prob = top_log_probs[0, i].item()
new_seq = seq + [token]
new_score = score + token_log_prob
token_tensor = torch.tensor([token], device=device)
embeddings = model.lstm.embedding(token_tensor)
context, _ = model.lstm.attention(cnn_features, h_new[-1])
new_lstm_input = torch.cat([embeddings, context], dim=1).unsqueeze(1)
if h_new is not None and c_new is not None:
h_new, c_new = (h_new.clone(), c_new.clone())
else:
h_new, c_new = None, None
all_candidates.append((new_seq, new_score, new_lstm_input, (h_new, c_new) ))
if not all_candidates:
break
ordered = sorted(all_candidates, key=lambda tup: tup[1], reverse=True)
sequences = ordered[:beam_width]
if len(completed_sequences) >= beam_width:
break
if len(completed_sequences) == 0:
completed_sequences = sequences
best_seq = max(completed_sequences, key=lambda x: x[1])
best_caption = decoder(best_seq[0])
return best_caption
## ResNet50 (CNN Encoder)
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.ResNet50 = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
self.features = nn.Sequential(*list(self.ResNet50.children())[:-2])
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
for param in self.ResNet50.parameters():
param.requires_grad = False
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
B, C, H, W = x.size()
x = x.view(B, C, -1) # Flatten spatial dimensions: (B, 2048, 49)
x = x.permute(0, 2, 1) # (B, 49, 2048) - 49 spatial locations
return x
class Attention(nn.Module):
def __init__(self, feature_size, hidden_size):
super(Attention, self).__init__()
self.attention = nn.Linear(feature_size + hidden_size, hidden_size)
self.attn_weights = nn.Linear(hidden_size, 1)
def forward(self, features, hidden_state): # features: (B, 49, 2048), hidden_state: (B, hidden_size)
hidden_state = hidden_state.unsqueeze(1).repeat(1, features.size(1), 1) # (B, 49, hidden_size)
combined = torch.cat((features, hidden_state), dim=2) # (B, 49, feature_size + hidden_size)
attn_hidden = torch.tanh(self.attention(combined)) # (B, 49, hidden_size)
attention_logits = self.attn_weights(attn_hidden).squeeze(2) # (B, 49)
attention_weights = torch.softmax(attention_logits, dim=1) # (B, 49)
context = (features * attention_weights.unsqueeze(2)).sum(dim=1) # (B, 2048)
return context, attention_weights
# Attention without learnable paramters:
# logits = torch.matmul(features, hidden_state.unsqueeze(2)) # (B, 49, 1) - Batch Matriax
# attention_weights = torch.softmax(logits, dim=1).squeeze(2) # (B, 49)
# context = (features * attention_weights.unsqueeze(2)).sum(dim=1) # (B, 2048)
class lstm(nn.Module):
def __init__(self, feature_size, hidden_size, number_layers, embedding_dim, vocab_size):
super(lstm, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.attention = Attention(feature_size, hidden_size)
self.lstm = nn.LSTM(
input_size=hidden_size + feature_size, # input: concatenated context and word embedding
hidden_size=hidden_size,
num_layers=number_layers,
dropout=0.5,
batch_first=True,
)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, features, captions=None, max_seq_len=None, teacher_forcing_ratio=0.90):
batch_size = features.size(0)
max_seq_len = max_seq_len if max_seq_len is not None else captions.size(1)
h, c = self.init_hidden_state(batch_size)
outputs = torch.zeros(batch_size, max_seq_len, self.fc.out_features).to(features.device)
word_input = torch.tensor(2, dtype=torch.long).expand(batch_size).to(features.device) # vocab["<sos>"] ---> 2
for t in range(1, max_seq_len):
embeddings = self.embedding(word_input)
context, _ = self.attention(features, h[-1])
lstm_input_step = torch.cat([embeddings, context], dim=1).unsqueeze(1) # Combine context + word embedding
out, (h, c) = self.lstm(lstm_input_step, (h, c))
output = self.fc(out.squeeze(1))
outputs[:, t, :] = output
top1 = output.argmax(1)
if captions is not None and torch.rand(1).item() < teacher_forcing_ratio:
word_input = captions[:, t]
else:
word_input = top1
return outputs
def init_hidden_state(self, batch_size):
device = next(self.parameters()).device
h0 = torch.zeros(self.lstm.num_layers, batch_size, self.hidden_size).to(device)
c0 = torch.zeros(self.lstm.num_layers, batch_size, self.hidden_size).to(device)
return (h0, c0)
class ImgCap(nn.Module):
def __init__(self, feature_size, lstm_hidden_size, num_layers, vocab_size, embedding_dim):
super(ImgCap, self).__init__()
self.cnn = ResNet50()
self.lstm = lstm(feature_size, lstm_hidden_size, num_layers, embedding_dim, vocab_size)
def forward(self, images, captions):
cnn_features = self.cnn(images)
output = self.lstm(cnn_features, captions)
return output
def generate_caption(self, images, vocab, decoder, device="cpu", start_token="<sos>", end_token="<eos>", max_seq_length=100):
self.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
captions = [[start_index,] for _ in range(batch_size)]
end_token_appear = [False] * batch_size
cnn_features = self.cnn(images) # (B, 49, 2048)
h, c = self.lstm.init_hidden_state(batch_size)
word_input = torch.full((batch_size,), start_index, dtype=torch.long).to(device)
for t in range(max_seq_length):
embeddings = self.lstm.embedding(word_input)
context, _ = self.lstm.attention(cnn_features, h[-1]) # Attention context
lstm_input_step = torch.cat([embeddings, context], dim=1).unsqueeze(1) # Combine context + word embedding
out, (h, c) = self.lstm.lstm(lstm_input_step, (h, c))
output = self.lstm.fc(out.squeeze(1)) # (B, vocab_size)
# Get the predicted word (greedy search)
predicted_word_indices = torch.argmax(output, dim=1) # (B,)
word_input = predicted_word_indices
for i in range(batch_size):
if not end_token_appear[i]:
predicted_word = vocab.lookup_token(predicted_word_indices[i].item())
if predicted_word == end_token:
captions[i].append(predicted_word_indices[i].item())
end_token_appear[i] = True
else:
captions[i].append(predicted_word_indices[i].item())
if all(end_token_appear): # Stop if all captions have reached the <eos> token
break
captions = [decoder(caption) for caption in captions]
return captions
def beam_search_caption(self, images, vocab, decoder, device="cpu",
start_token="<sos>", end_token="<eos>",
beam_width=3, max_seq_length=100):
self.eval()
with torch.no_grad():
start_index = vocab[start_token]
end_index = vocab[end_token]
images = images.to(device)
batch_size = images.size(0)
# Ensure batch_size is 1 for beam search (one image at a time)
if batch_size != 1:
raise ValueError("Beam search currently supports batch_size=1.")
cnn_features = self.cnn(images) # (B, 49, 2048)
h, c = self.lstm.init_hidden_state(batch_size)
word_input = torch.full((batch_size,), start_index, dtype=torch.long).to(device)
embeddings = self.lstm.embedding(word_input)
context, _ = self.lstm.attention(cnn_features, h[-1])
lstm_input = torch.cat([embeddings, context], dim=1).unsqueeze(1)
sequences = [([start_index], 0.0, lstm_input, (h, c))] # List of tuples: (sequence, score, input, state)
completed_sequences = []
for _ in range(max_seq_length):
all_candidates = []
for seq, score, lstm_input, (h,c) in sequences:
if seq[-1] == end_index:
completed_sequences.append((seq, score))
continue
lstm_out, (h_new, c_new) = model.lstm.lstm(lstm_input, (h, c)) # lstm_out: (1, 1, 1024)
output = model.lstm.fc(lstm_out.squeeze(1)) # Shape: (1, vocab_size)
log_probs = F.log_softmax(output, dim=1) # Shape: (1, vocab_size)
top_log_probs, top_indices = log_probs.topk(beam_width, dim=1) # Each of shape: (1, beam_width)
for i in range(beam_width):
token = top_indices[0, i].item()
token_log_prob = top_log_probs[0, i].item()
new_seq = seq + [token]
new_score = score + token_log_prob
token_tensor = torch.tensor([token], device=device)
embeddings = self.lstm.embedding(token_tensor)
context, _ = self.lstm.attention(cnn_features, h_new[-1])
new_lstm_input = torch.cat([embeddings, context], dim=1).unsqueeze(1)
if h_new is not None and c_new is not None:
h_new, c_new = (h_new.clone(), c_new.clone())
else:
h_new, c_new = None, None
all_candidates.append((new_seq, new_score, new_lstm_input, (h_new, c_new) ))
if not all_candidates:
break
ordered = sorted(all_candidates, key=lambda tup: tup[1], reverse=True)
sequences = ordered[:beam_width]
if len(completed_sequences) >= beam_width:
break
if len(completed_sequences) == 0:
completed_sequences = sequences
best_seq = max(completed_sequences, key=lambda x: x[1])
best_caption = decoder(best_seq[0], vocab)
return best_caption