Show-o / models /sampling.py
JosephPai
init
8741abe
# Adapted from https://github.com/lucidrains/muse-maskgit-pytorch
import math
from functools import partial
import torch
import torch.nn.functional as F
def log(t, eps=1e-20):
return torch.log(t.clamp(min=eps))
def gumbel_noise(t, generator=None):
noise = torch.zeros_like(t).uniform_(0, 1, generator=generator)
return -log(-log(noise))
def gumbel_sample(t, temperature=1.0, dim=-1, generator=None):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t, generator=generator)).argmax(dim=dim)
def top_k(logits, thres=0.9):
k = math.ceil((1 - thres) * logits.shape[-1])
val, ind = logits.topk(k, dim=-1)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(2, ind, val)
return probs
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
confidence = log(probs) + temperature * gumbel_noise(probs, generator=generator)
sorted_confidence = torch.sort(confidence, dim=-1).values
cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
masking = confidence < cut_off
return masking
def cosine_schedule(t):
return torch.cos(t * math.pi * 0.5)
def linear_schedule(t):
mask_ratio = 1 - t
mask_ratio = mask_ratio.clamp(min=1e-6, max=1.0)
return mask_ratio
def pow(t, method):
exponent = float(method.replace("pow", ""))
mask_ratio = 1.0 - t**exponent
mask_ratio = mask_ratio.clamp(min=1e-6, max=1.0)
return mask_ratio
def sigmoid_schedule(t, start=-3, end=3, tau=1.0, clip_min=1e-6):
for item in [t, start, end, tau]:
item = torch.tensor(item) if not torch.is_tensor(item) else item
# A gamma function based on sigmoid function.
v_start = torch.sigmoid(torch.tensor(start / tau))
v_end = torch.sigmoid(torch.tensor(end / tau))
output = torch.sigmoid((t * (end - start) + start) / tau)
output = (v_end - output) / (v_end - v_start)
return torch.clip(output, clip_min, 1.0)
def get_mask_chedule(method, **schedule_kwargs):
if method == "cosine":
return cosine_schedule
elif method == "linear":
return linear_schedule
elif "pow" in method:
return partial(pow, method=method)
elif method == "sigmoid":
return partial(sigmoid_schedule, **schedule_kwargs)
else:
raise ValueError("Unknown schedule method: {}".format(method))
def top_k_top_p_filtering(
logits: torch.Tensor,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
) -> torch.Tensor:
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits