|
|
|
|
|
import math |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def log(t, eps=1e-20): |
|
return torch.log(t.clamp(min=eps)) |
|
|
|
|
|
def gumbel_noise(t, generator=None): |
|
noise = torch.zeros_like(t).uniform_(0, 1, generator=generator) |
|
return -log(-log(noise)) |
|
|
|
|
|
def gumbel_sample(t, temperature=1.0, dim=-1, generator=None): |
|
return ((t / max(temperature, 1e-10)) + gumbel_noise(t, generator=generator)).argmax(dim=dim) |
|
|
|
|
|
def top_k(logits, thres=0.9): |
|
k = math.ceil((1 - thres) * logits.shape[-1]) |
|
val, ind = logits.topk(k, dim=-1) |
|
probs = torch.full_like(logits, float("-inf")) |
|
probs.scatter_(2, ind, val) |
|
return probs |
|
|
|
|
|
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None): |
|
confidence = log(probs) + temperature * gumbel_noise(probs, generator=generator) |
|
sorted_confidence = torch.sort(confidence, dim=-1).values |
|
cut_off = torch.gather(sorted_confidence, 1, mask_len.long()) |
|
masking = confidence < cut_off |
|
return masking |
|
|
|
|
|
def cosine_schedule(t): |
|
return torch.cos(t * math.pi * 0.5) |
|
|
|
|
|
def linear_schedule(t): |
|
mask_ratio = 1 - t |
|
mask_ratio = mask_ratio.clamp(min=1e-6, max=1.0) |
|
return mask_ratio |
|
|
|
|
|
def pow(t, method): |
|
exponent = float(method.replace("pow", "")) |
|
mask_ratio = 1.0 - t**exponent |
|
mask_ratio = mask_ratio.clamp(min=1e-6, max=1.0) |
|
return mask_ratio |
|
|
|
|
|
def sigmoid_schedule(t, start=-3, end=3, tau=1.0, clip_min=1e-6): |
|
for item in [t, start, end, tau]: |
|
item = torch.tensor(item) if not torch.is_tensor(item) else item |
|
|
|
|
|
v_start = torch.sigmoid(torch.tensor(start / tau)) |
|
v_end = torch.sigmoid(torch.tensor(end / tau)) |
|
output = torch.sigmoid((t * (end - start) + start) / tau) |
|
output = (v_end - output) / (v_end - v_start) |
|
return torch.clip(output, clip_min, 1.0) |
|
|
|
|
|
def get_mask_chedule(method, **schedule_kwargs): |
|
if method == "cosine": |
|
return cosine_schedule |
|
elif method == "linear": |
|
return linear_schedule |
|
elif "pow" in method: |
|
return partial(pow, method=method) |
|
elif method == "sigmoid": |
|
return partial(sigmoid_schedule, **schedule_kwargs) |
|
else: |
|
raise ValueError("Unknown schedule method: {}".format(method)) |
|
|
|
def top_k_top_p_filtering( |
|
logits: torch.Tensor, |
|
top_k: int = 0, |
|
top_p: float = 1.0, |
|
filter_value: float = -float("Inf"), |
|
min_tokens_to_keep: int = 1, |
|
) -> torch.Tensor: |
|
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering |
|
Args: |
|
logits: logits distribution shape (batch size, vocabulary size) |
|
if top_k > 0: keep only top k tokens with highest probability (top-k filtering). |
|
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). |
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) |
|
Make sure we keep at least min_tokens_to_keep per batch example in the output |
|
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 |
|
""" |
|
if top_k > 0: |
|
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) |
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits[indices_to_remove] = filter_value |
|
|
|
if top_p < 1.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
if min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 |
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
logits[indices_to_remove] = filter_value |
|
return logits |
|
|