Show-o / prompting_utils.py
JosephPai
init
8741abe
raw
history blame
24.7 kB
import torch
class UniversalPrompting():
def __init__(self, text_tokenizer,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
max_text_len=8000, max_seq_len=377, ignore_id=-100, cond_dropout_prob=0.1):
"""
:param text_tokenizer: original text tokenizer
"""
self.text_tokenizer = text_tokenizer
self.text_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.text_tokenizer.add_tokens(list(special_tokens))
self.sptids_dict = {token: torch.tensor(self.text_tokenizer.convert_tokens_to_ids([token])) for token in
special_tokens}
self.sptids_dict['<|sot|>'] = torch.tensor([self.text_tokenizer.bos_token_id])
self.sptids_dict['<|eot|>'] = torch.tensor([self.text_tokenizer.eos_token_id])
self.sptids_dict['<|pad|>'] = torch.tensor([self.text_tokenizer.pad_token_id])
# plus 1 because at this time we add a task token before
self.max_text_len = max_text_len + 1
self.pad_id = self.text_tokenizer.convert_tokens_to_ids('[PAD]')
self.ignore_id = ignore_id
self.cond_dropout_prob = cond_dropout_prob
def t2i_prompt_predict_next(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id, self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
labels[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2i_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
# language modeling
def lm_prompt(self, text_ids, max_seq_len):
sequence_ids = []
attention_masks = []
label_ids = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.eos_token_id] + text_ids[i]
temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id]
if max_seq_len >= len(temp_ids):
temp_labels_ids = temp_ids + [self.ignore_id] * (max_seq_len - len(temp_ids))
temp_ids = temp_ids + [self.pad_id] * (max_seq_len - len(temp_ids))
temp_masks = [1] * len(temp_ids) + [0] * (max_seq_len - len(temp_ids))
else:
# In language modeling, we only process text tokens. We do not add the eos token if the text length
# exceeds the max sequence length
temp_labels_ids = temp_ids[:max_seq_len]
temp_ids = temp_ids[:max_seq_len]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.tensor(temp_ids)
temp_masks = torch.tensor(temp_masks)
temp_labels_ids = torch.tensor(temp_labels_ids)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_labels_ids.unsqueeze(0))
# input_ids, masks, labels
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def mmu_prompt(self, image_ids, text_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
max_text_len = self.max_text_len - 1
for i in range(len(text_ids)):
# note that, llama3 tokenizer automatically add the bot token at first but without eot
# for empty list []
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.eos_token_id] + text_ids[i]
temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id]
if max_text_len >= len(temp_ids):
# minus 1 because task token was prepended to the former image tokens
temp_ids = temp_ids + [self.pad_id] * (max_text_len - len(temp_ids))
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) + [0] * (max_text_len - len(temp_ids))
else:
# should add the eos token
temp_ids = temp_ids[:max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
torch.tensor([self.ignore_id]).to(device),
torch.tensor([self.ignore_id]).to(device),
torch.ones_like(image_ids[i]) * self.ignore_id,
torch.tensor([self.ignore_id]).to(device),
torch.tensor(temp_ids).to(device),
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
self.sptids_dict['<|mmu|>'].to(device), # task token
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device),
torch.tensor(temp_ids).to(device),
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2v_prompt(self, text_ids, video_ids):
"""
:param text_ids:
:param video_ids:
:return:
"""
pass
def i2v_prompt(self, image_ids, video_ids):
"""
:param image_ids:
:param video_ids:
:return:
"""
pass
def lvg_prompt(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
probs2 = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id,
self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
labels[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def lvg_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
def mask_prompt(self):
pass
def __call__(self, input, task, padding=True, config=None):
"""
input (tuple) : data pairs contain text(str), image(tensor), or videos(tensor).
task (str) : a flag indicates the current task.
"""
if task == "t2i":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt(text_ids, image_ids, input[2])
elif task == "t2i_predict_next":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt_predict_next(text_ids, image_ids, input[2])
elif task == "t2i_predict_next_plus_lm":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt_predict_next(text_ids[:config.training.batch_size], image_ids,
input[2])
sequence_ids_with_masks_lm = self.lm_prompt(text_ids[config.training.batch_size:], input[3])
return sequence_ids_with_masks, sequence_ids_with_masks_lm
elif task == "t2i_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_gen_prompt(text_ids, image_ids)
elif task == "lm":
text_ids = self.text_tokenizer(input[0], truncation=True)['input_ids'] # (B, max_len)
sequence_ids_with_masks = self.lm_prompt(text_ids, input[1])
elif task == "mmu":
image_ids = input[0]
text_ids = self.text_tokenizer(input[1])['input_ids']
sequence_ids_with_masks = self.mmu_prompt(image_ids, text_ids)
elif task == "t2v":
text_ids = self.text_tokenizer(input[0]['input_ids'])
video_ids = self.vision_tokenizer(input[1])
sequence_ids_with_masks = self.t2v_prompt(text_ids, video_ids)
elif task == "i2v":
image_ids = self.text_tokenizer(input[0])
video_ids = self.vision_tokenizer(input[1])
sequence_ids_with_masks = self.i2v_prompt(image_ids, video_ids)
elif task == "lvg":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.lvg_prompt(text_ids, image_ids, input[2])
elif task == "lvg_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.lvg_gen_prompt(text_ids, image_ids)
else:
raise NotImplementedError
return sequence_ids_with_masks
def create_attention_mask_predict_next(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, rm_pad_in_image=False,
return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
is_start_image = sequence == soi_id
is_end_image = sequence == eoi_id
# Create cumulative sum masks to identify regions of image tokens
cumulative_start = torch.cumsum(is_start_image, dim=1)
cumulative_end = torch.cumsum(is_end_image, dim=1)
in_image_segment = (cumulative_start > cumulative_end) | is_start_image | is_end_image
is_text = ~(in_image_segment)
causal_mask = torch.tril(torch.ones((L, L), dtype=torch.bool)).to(sequence.device)
mask_text = is_text[:, :, None] * causal_mask[None, :, :]
is_text_image = is_text | in_image_segment
mask_text_image_bi = is_text_image[:, :, None] * is_text_image[:, None, :]
if rm_pad_in_image:
sid_img = torch.where(sequence == soi_id)[1]
for i in range(mask_text_image_bi.shape[0]):
pad_end_idx = torch.where(sequence[i] == pad_id)
if len(pad_end_idx[0]) != 0:
pad_end_idx = pad_end_idx[0][-1]
mask_text[i][pad_end_idx + 1:, :pad_end_idx + 1] = 0
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
mask_text[in_image_segment] = mask_text_image_bi[in_image_segment]
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text.unsqueeze(1)
def create_attention_mask_lvg(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
mask_text_image_bi = torch.tril(torch.ones(N, L, L), diagonal=0).to(sequence.device)
sid_img = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)[:, 0]
sid_img_for_bi = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_img_for_bi = torch.where(sequence == eoi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
for i in range(N):
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
for j in range(sid_img_for_bi.shape[-1]):
mask_text_image_bi[i][sid_img_for_bi[i, j]:eid_img_for_bi[i, j] + 1,
sid_img_for_bi[i, j]:eid_img_for_bi[i, j] + 1] = 1
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text_image_bi.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text_image_bi.unsqueeze(1)
# texts without attending image regions
def create_attention_mask_lvg_v2(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, sot_id=1000, eot_id=1001, return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
# is_text = torch.where(sequence < 2000, True, False)
is_text = torch.where(sequence < pad_id, True, False)
mask_text_image_bi = torch.tril(torch.ones(N, L, L), diagonal=0).to(sequence.device).int()
sid_text_for_bi = torch.where(sequence == sot_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_text_for_bi = torch.where(sequence == eot_id)[1].reshape(mask_text_image_bi.shape[0], -1)
# import ipdb
# ipdb.set_trace()
if sot_id == eot_id:
if sid_text_for_bi.shape[-1] % 2 != 0:
sid_text_for_bi = sid_text_for_bi[:, :-1]
eid_text_for_bi = eid_text_for_bi[:, :-1]
select_idx = [i for i in range(0, sid_text_for_bi.shape[1], 2)]
sid_text_for_bi = sid_text_for_bi[:, select_idx]
select_idx = [i+1 for i in range(0, eid_text_for_bi.shape[1], 2)]
eid_text_for_bi = eid_text_for_bi[:, select_idx]
sid_img_for_bi = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_img_for_bi = torch.where(sequence == eoi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
all_zeros = torch.zeros_like(mask_text_image_bi).int()
for i in range(N):
all_zeros[i, :, is_text[i]] = 1
for j in range(sid_text_for_bi.shape[-1]):
all_zeros[i][is_text[i], sid_text_for_bi[i, j]:eid_text_for_bi[i, j]+1] = 1
all_zeros[i][~is_text[i], sid_text_for_bi[i, j]:eid_text_for_bi[i, j]+1] = 1
for j in range(sid_img_for_bi.shape[-1]):
all_zeros[i][~is_text[i], sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1] = 1
mask_text_image_bi = mask_text_image_bi * all_zeros
sid_img = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)[:, 0]
for i in range(N):
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
for j in range(sid_img_for_bi.shape[-1]):
mask_text_image_bi[i][sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1, sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1] = 1
mask_text_image_bi[:, :, 0] = 1
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text_image_bi.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text_image_bi.unsqueeze(1)
def create_attention_mask_for_mmu(sequence, eoi_id=128258, return_inverse_mask=True):
N, L = sequence.shape
causal_mask = torch.tril(torch.ones((N, 1, L, L), dtype=torch.bool)).to(sequence.device)
eoi_image = torch.where(sequence == eoi_id)[1]
causal_mask[:, :, :, :eoi_image[0] + 1] = 1
if return_inverse_mask:
inverted_mask = 1.0 - causal_mask.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask
else:
return causal_mask
def create_attention_mask_for_mmu_vit(
sequence,
return_inverse_mask=True,
system_prompt_len=0
):
N, L, H = sequence.shape
causal_mask = torch.tril(torch.ones((N, 1, L, L), dtype=torch.bool)).to(sequence.device)
index = 1 + system_prompt_len + 1 + 576
causal_mask[:, :, :, :index] = 1
if return_inverse_mask:
inverted_mask = 1.0 - causal_mask.type(torch.int64)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(torch.int64).min
)
return inverted_mask
else:
return causal_mask
if __name__ == '__main__':
pass