|
import os |
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "true" |
|
import numpy as np |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from omegaconf import OmegaConf |
|
from transformers import AutoTokenizer |
|
|
|
from prompting_utils import UniversalPrompting, create_attention_mask_predict_next, create_attention_mask_for_mmu |
|
from training_utils import image_transform |
|
from models import Showo, MAGVITv2, get_mask_chedule |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
config = OmegaConf.load("configs/showo_demo.yaml") |
|
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left") |
|
|
|
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, |
|
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", |
|
"<|t2v|>", "<|v2v|>", "<|lvg|>"), |
|
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob) |
|
|
|
vq_model = MAGVITv2() |
|
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) |
|
vq_model.requires_grad_(False) |
|
vq_model.eval() |
|
|
|
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device) |
|
model.eval() |
|
mask_token_id = model.config.mask_token_id |
|
|
|
|
|
@spaces.GPU |
|
def text_to_image_generation(input_text, guidance_scale=1.75, generation_timesteps=18): |
|
prompts = [input_text] |
|
config.training.batch_size = config.batch_size = 1 |
|
config.training.guidance_scale = config.guidance_scale = guidance_scale |
|
config.training.generation_timesteps = config.generation_timesteps = generation_timesteps |
|
|
|
image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens), |
|
dtype=torch.long, device=device) * mask_token_id |
|
|
|
input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen') |
|
|
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen') |
|
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
else: |
|
attention_mask = create_attention_mask_predict_next(input_ids, |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
uncond_input_ids = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_chedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) |
|
|
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.showo.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) |
|
images = vq_model.decode_code(gen_token_ids) |
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8) |
|
|
|
return images[0] |
|
|
|
|
|
@spaces.GPU |
|
def text_guided_inpainting(input_text, inpainting_image, inpainting_mask, guidance_scale=1.75, generation_timesteps=16): |
|
prompt = [input_text] |
|
|
|
config.training.batch_size = config.batch_size = 1 |
|
config.training.guidance_scale = config.guidance_scale = guidance_scale |
|
config.training.generation_timesteps = config.generation_timesteps = generation_timesteps |
|
|
|
inpainting_image = image_transform(inpainting_image, resolution=config.dataset.params.resolution).to(device) |
|
inpainting_mask = image_transform(inpainting_mask, resolution=config.dataset.params.resolution, normalize=False) |
|
|
|
inpainting_image = inpainting_image.unsqueeze(0).repeat(config.training.batch_size, 1, 1, 1) |
|
|
|
inpainting_mask = inpainting_mask.unsqueeze(0).to(device) |
|
inpainting_mask = F.interpolate(inpainting_mask, size=config.dataset.params.resolution // 16, mode='bicubic') |
|
inpainting_mask = inpainting_mask.repeat(config.training.batch_size, 1, 1, 1) |
|
|
|
inpainting_mask[inpainting_mask < 0.5] = 0 |
|
inpainting_mask[inpainting_mask >= 0.5] = 1 |
|
|
|
inpainting_mask = inpainting_mask.reshape(config.training.batch_size, -1) |
|
inpainting_mask = inpainting_mask.to(torch.bool) |
|
|
|
inpainting_image_tokens = vq_model.get_code(inpainting_image) + len(uni_prompting.text_tokenizer) |
|
inpainting_image_tokens[inpainting_mask] = mask_token_id |
|
|
|
input_ids, _ = uni_prompting((prompt, inpainting_image_tokens), 't2i_gen') |
|
|
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, _ = uni_prompting(([''] * len(prompt), inpainting_image_tokens), 't2i_gen') |
|
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
else: |
|
attention_mask = create_attention_mask_predict_next(input_ids, |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
uncond_input_ids = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_chedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) |
|
|
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.showo.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) |
|
images = vq_model.decode_code(gen_token_ids) |
|
|
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8) |
|
|
|
return images[0] |
|
|
|
|
|
@spaces.GPU |
|
def text_guided_extrapolation(input_img, input_text, left_ext, right_ext, guidance_scale=1.75, generation_timesteps=16): |
|
config.offset = 0 |
|
config.training.batch_size = config.batch_size = 1 |
|
config.training.guidance_scale = config.guidance_scale = guidance_scale |
|
config.training.generation_timesteps = config.generation_timesteps = generation_timesteps |
|
|
|
extra_direction = ['right'] * int(right_ext) + ['left'] * int(left_ext) |
|
prompt = [input_text] * len(extra_direction) |
|
W = config.dataset.params.resolution // 16 |
|
for id, (prt, direction) in enumerate(zip(prompt, extra_direction)): |
|
prt = [prt] * config.training.batch_size |
|
if id == 0: |
|
|
|
extrapolation_image = input_img |
|
extrapolation_image = image_transform(extrapolation_image, |
|
resolution=config.dataset.params.resolution).to(device) |
|
|
|
B, _, _ = extrapolation_image.shape |
|
extrapolation_image = extrapolation_image.unsqueeze(0) |
|
extrapolation_image_tokens = vq_model.get_code(extrapolation_image) + len(uni_prompting.text_tokenizer) |
|
extrapolation_image_tokens = extrapolation_image_tokens.reshape(1, |
|
config.dataset.params.resolution // 16, |
|
config.dataset.params.resolution // 16) |
|
extrapolation_image_tokens = extrapolation_image_tokens.repeat(config.training.batch_size, 1, 1) |
|
else: |
|
|
|
extrapolation_image_tokens = gen_token_ids + len(uni_prompting.text_tokenizer) |
|
|
|
image_left_part = extrapolation_image_tokens[:, :, :-(W // 2 - config.offset)] - len( |
|
uni_prompting.text_tokenizer) |
|
image_right_part = extrapolation_image_tokens[:, :, W // 2 - config.offset:] - len(uni_prompting.text_tokenizer) |
|
image_up_part = extrapolation_image_tokens[:, :-(W // 2 - config.offset), :] - len(uni_prompting.text_tokenizer) |
|
image_down_part = extrapolation_image_tokens[:, W // 2 - config.offset:, :] - len(uni_prompting.text_tokenizer) |
|
|
|
if direction in ['left', 'right']: |
|
extrapolation_mask = torch.zeros((config.training.batch_size, |
|
config.dataset.params.resolution // 16, |
|
config.dataset.params.resolution // 16 // 2 + config.offset), |
|
dtype=torch.int64, device=device) + mask_token_id |
|
else: |
|
extrapolation_mask = torch.zeros((config.training.batch_size, |
|
config.dataset.params.resolution // 16 // 2 + config.offset, |
|
config.dataset.params.resolution // 16), |
|
dtype=torch.int64, device=device) + mask_token_id |
|
|
|
if direction == 'left': |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_mask, extrapolation_image_tokens[:, :, :W // 2 - config.offset]], dim=-1) |
|
elif direction == 'right': |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_image_tokens[:, :, -(W // 2 - config.offset):], extrapolation_mask], dim=-1) |
|
elif direction == 'up': |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_mask, extrapolation_image_tokens[:, :W // 2 - config.offset, :]], dim=-2) |
|
else: |
|
extrapolation_image_tokens = torch.cat( |
|
[extrapolation_image_tokens[:, -(W // 2 - config.offset):, :], extrapolation_mask], dim=-2) |
|
|
|
extrapolation_image_tokens = extrapolation_image_tokens.reshape(config.training.batch_size, -1) |
|
|
|
input_ids, _ = uni_prompting((prt, extrapolation_image_tokens), 't2i_gen') |
|
|
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, _ = uni_prompting(([''] * len(prt), extrapolation_image_tokens), 't2i_gen') |
|
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0), |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
else: |
|
attention_mask = create_attention_mask_predict_next(input_ids, |
|
pad_id=int(uni_prompting.sptids_dict['<|pad|>']), |
|
soi_id=int(uni_prompting.sptids_dict['<|soi|>']), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']), |
|
rm_pad_in_image=True) |
|
uncond_input_ids = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_chedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine")) |
|
|
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.showo.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0) |
|
gen_token_ids = gen_token_ids.reshape(config.training.batch_size, |
|
config.dataset.params.resolution // 16, |
|
config.dataset.params.resolution // 16) |
|
if direction == 'left': |
|
gen_token_ids = torch.cat([gen_token_ids, image_right_part], dim=-1) |
|
elif direction == 'right': |
|
gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-1) |
|
elif direction == 'up': |
|
gen_token_ids = torch.cat([gen_token_ids, image_down_part], dim=-2) |
|
else: |
|
gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-2) |
|
|
|
_, h, w = gen_token_ids.shape |
|
gen_token_ids = gen_token_ids.reshape(config.training.batch_size, -1) |
|
|
|
with torch.no_grad(): |
|
images = vq_model.decode_code(gen_token_ids, shape=(h, w)) |
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8) |
|
|
|
return images[0] |
|
|
|
|
|
@spaces.GPU |
|
def multimodal_understanding(input_img, input_text, chat_history): |
|
top_k = 1 |
|
|
|
image_ori = input_img |
|
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device) |
|
image = image.unsqueeze(0) |
|
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer) |
|
|
|
question = input_text |
|
input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[ |
|
'input_ids'] |
|
input_ids = torch.tensor(input_ids).to(device) |
|
|
|
input_ids = torch.cat([ |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device), |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), |
|
image_tokens, |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), |
|
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device), |
|
input_ids |
|
], dim=1).long() |
|
|
|
attention_mask = create_attention_mask_for_mmu(input_ids.to(device), |
|
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>'])) |
|
|
|
cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask, |
|
max_new_tokens=100, top_k=top_k, |
|
eot_token=uni_prompting.sptids_dict['<|eot|>']) |
|
|
|
cont_toks_list = torch.stack(cont_toks_list).squeeze()[None] |
|
|
|
output_text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True) |
|
|
|
output_text = output_text[0].strip() |
|
|
|
chat_history.append((input_text, output_text)) |
|
|
|
return "", chat_history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(""" |
|
<h1 class="display-2 fw-bold title"> |
|
<a style="color: #70a8dc;">S</a><a style="color: #6fb051;">h</a><a style="color: #e06766;">o</a><a style="color: #f7b26b;">w</a>-o |
|
</h1> |
|
<p>This is the official Gradio demo for the Show-o model, a unified model that can do multimodal understanding and generation.</p> |
|
|
|
<strong>Paper:</strong> <a href="https://arxiv.org/abs/2408.12528" target="_blank">Show-o: One Single Transformer To Unify Multimodal Understanding and Generation </a> |
|
<br/> |
|
<strong>Project Website:</strong> <a href="https://showlab.github.io/Show-o/" target="_blank">Show-o Website</a> |
|
<br/> |
|
<strong>Code and Models:</strong> <a href="https://github.com/showlab/Show-o" target="_blank">GitHub</a> |
|
<br/> |
|
<br/> |
|
""") |
|
|
|
banner_1 = gr.Markdown(value="# Text-to-image Generation") |
|
with gr.Row(): |
|
with gr.Column(): |
|
text_prompt_t2i = gr.Textbox( |
|
label="Text prompt", |
|
lines=2, |
|
placeholder="Input the text prompt here for image generation." |
|
) |
|
guidance_scale_t2i = gr.Slider( |
|
label="guidance scale", |
|
minimum=0, |
|
maximum=5, |
|
step=0.05, |
|
value=1.75 |
|
) |
|
generation_timesteps_t2i = gr.Slider( |
|
label="timesteps", |
|
minimum=1, |
|
maximum=30, |
|
step=1, |
|
value=18 |
|
) |
|
generated_img_t2i = gr.Image( |
|
label="Output image" |
|
) |
|
examples_t2i = gr.Examples( |
|
label="Text to image generation examples", |
|
examples=[ |
|
"A dynamic scene of a rally car race.", |
|
"Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.", |
|
"Pixel art character riding a dragon through the clouds.", |
|
], |
|
inputs=text_prompt_t2i, |
|
) |
|
submit_btn_t2i = gr.Button("Generate: Text-to-image") |
|
submit_btn_t2i.click(text_to_image_generation, |
|
[text_prompt_t2i, guidance_scale_t2i, generation_timesteps_t2i], |
|
[generated_img_t2i]) |
|
|
|
banner_2 = gr.Markdown(value="# Text-guided inpainting") |
|
with gr.Row(): |
|
inpainting_input_img = gr.Image( |
|
label="Input image", |
|
type="pil", |
|
height=256, |
|
width=256, |
|
) |
|
inpainting_input_mask = gr.Image( |
|
label="Inpainting mask", |
|
image_mode="L", |
|
type="pil", |
|
height=256, |
|
width=256, |
|
) |
|
|
|
with gr.Column(): |
|
text_prompt_inpainting = gr.Textbox( |
|
label="Text prompt", |
|
lines=2, |
|
placeholder="Input the text prompt here for image inpainting." |
|
) |
|
guidance_scale_inpainting = gr.Slider( |
|
label="guidance scale", |
|
minimum=0, |
|
maximum=5, |
|
step=0.05, |
|
value=1.75 |
|
) |
|
generation_timesteps_inpainting = gr.Slider( |
|
label="timesteps", |
|
minimum=1, |
|
maximum=30, |
|
step=1, |
|
value=16 |
|
) |
|
generated_img_inpainting = gr.Image( |
|
label="Output image" |
|
) |
|
examples_inpainting = gr.Examples( |
|
label="Text-guided inpainting examples", |
|
examples=[ |
|
[ |
|
"a blue sports car with sleek curves and tinted windows, parked on a bustling city street.", |
|
Image.open("./inpainting_validation/bus.jpg").convert("RGB"), |
|
Image.open("./inpainting_validation/bus_mask.webp").convert("L"), |
|
], |
|
[ |
|
"a clear, shallow river with some vibrant flowers in it.", |
|
Image.open("./inpainting_validation/train.jpg").convert("RGB"), |
|
Image.open("./inpainting_validation/train_mask.webp").convert("L"), |
|
], |
|
], |
|
inputs=[text_prompt_inpainting, inpainting_input_img, inpainting_input_mask], |
|
) |
|
submit_btn_inpainting = gr.Button("Generate: Text-guided Inpainting") |
|
submit_btn_inpainting.click(text_guided_inpainting, |
|
[text_prompt_inpainting, inpainting_input_img, inpainting_input_mask, |
|
guidance_scale_inpainting, generation_timesteps_inpainting], |
|
[generated_img_inpainting]) |
|
|
|
banner_3 = gr.Markdown(value="# Text-guided extrapolation") |
|
with gr.Row(): |
|
extra_input_img = gr.Image( |
|
label="Input image", |
|
type="pil", |
|
image_mode="RGB", |
|
) |
|
|
|
with gr.Column(): |
|
text_prompt_extrapolation = gr.Textbox( |
|
label="Text prompt", |
|
lines=1, |
|
placeholder="Input the text prompt here for image extrapolation." |
|
) |
|
guidance_scale_extrapolation = gr.Slider( |
|
label="guidance scale", |
|
minimum=0, |
|
maximum=5, |
|
step=0.05, |
|
value=1.75 |
|
) |
|
generation_timesteps_extrapolation = gr.Slider( |
|
label="timesteps", |
|
minimum=1, |
|
maximum=30, |
|
step=1, |
|
value=16 |
|
) |
|
left_extrapolation = gr.Slider( |
|
label="left extrapolation", |
|
minimum=0, |
|
maximum=5, |
|
step=1, |
|
value=1 |
|
) |
|
right_extrapolation = gr.Slider( |
|
label="right extrapolation", |
|
minimum=0, |
|
maximum=5, |
|
step=1, |
|
value=1 |
|
) |
|
generated_img_extrapolation = gr.Image( |
|
label="Output image" |
|
) |
|
examples_extra = gr.Examples( |
|
label="Text-guided extrapolation examples", |
|
examples=[ |
|
[ |
|
Image.open("./inpainting_validation/wukong2.jpg").convert("RGB"), |
|
"the continuous mountain ranges and jungles, with meandering rivers occasionally appearing.", |
|
2, |
|
2, |
|
], |
|
[ |
|
Image.open("./inpainting_validation/alpine_lake.jpg").convert("RGB"), |
|
"a serene natural landscape featuring a clear, blue lake surrounded by lush green trees.", |
|
2, |
|
2, |
|
], |
|
], |
|
inputs=[extra_input_img, text_prompt_extrapolation, left_extrapolation, right_extrapolation], |
|
) |
|
submit_btn_inpainting = gr.Button("Generate: Text-guided Extrapolation") |
|
submit_btn_inpainting.click(text_guided_extrapolation, |
|
[extra_input_img, text_prompt_extrapolation, left_extrapolation, right_extrapolation, |
|
guidance_scale_extrapolation, generation_timesteps_extrapolation], |
|
[generated_img_extrapolation]) |
|
|
|
banner_4 = gr.Markdown(value="# Multimodal understanding") |
|
with gr.Row(): |
|
with gr.Row(): |
|
chat_input_img = gr.Image( |
|
label="Input image", |
|
type="pil", |
|
image_mode="RGB", |
|
) |
|
with gr.Column(): |
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox(label="Press Enter to send a message for chat") |
|
clear = gr.ClearButton([msg, chatbot]) |
|
msg.submit(multimodal_understanding, [chat_input_img, msg, chatbot], [msg, chatbot]) |
|
|
|
demo.launch() |
|
|