shouzen commited on
Commit
8940ea8
1 Parent(s): c009cf1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
2
  from pylab import rcParams
3
  from statsmodels.tsa.seasonal import seasonal_decompose
4
  import streamlit as st
5
- import dask.dataframe as dd
6
 
7
  st.title('Project Canada Goose')
8
  st.write('Mempertahankan brand "canada goose" agar tetap menjadi penjualan tertinggi (untuk 1 tahun kedepan) dengan metode time series forecasting')
@@ -13,14 +13,14 @@ def load_csv_data():
13
  data = pd.concat(tp, ignore_index=True)
14
 
15
  # Convert data yang bukan datetime yang seperti 0000-0000 ke Datetime agar hasilnya NaT
16
- data['sold_at'] = dd.to_datetime(data['sold_at'], errors='coerce')
17
- data['created_at'] = dd.to_datetime(data['created_at'], errors='coerce')
18
- data['shipped_at'] = dd.to_datetime(data['shipped_at'], errors='coerce')
19
- data['delivered_at'] = dd.to_datetime(data['delivered_at'], errors='coerce')
20
- data['returned_at'] = dd.to_datetime(data['returned_at'], errors='coerce')
21
 
22
  # Ambil data date dari data setelahnya.
23
- data.fillna(method='bfill')
24
  return data
25
 
26
  data_load_state = st.text('Loading data...')
@@ -158,8 +158,8 @@ arima = auto_arima(y_train,start_p=1, start_q=1, max_p=3, max_q=3, m=12,
158
 
159
  n_forecast = len(y_test) + 8
160
  pred= arima.predict(n_forecast,D=1,seasonal=(1,0,0))
161
- dates = dd.date_range(y_test.index[-1],periods=n_forecast, freq='M')
162
- pred= dd.Series(pred, index=dates)
163
 
164
  fig = plt.figure(figsize=(15,5))
165
  plt.title("Prediksi menurut arima untuk 1 tahun kedepan")
 
2
  from pylab import rcParams
3
  from statsmodels.tsa.seasonal import seasonal_decompose
4
  import streamlit as st
5
+ import pandas as pd
6
 
7
  st.title('Project Canada Goose')
8
  st.write('Mempertahankan brand "canada goose" agar tetap menjadi penjualan tertinggi (untuk 1 tahun kedepan) dengan metode time series forecasting')
 
13
  data = pd.concat(tp, ignore_index=True)
14
 
15
  # Convert data yang bukan datetime yang seperti 0000-0000 ke Datetime agar hasilnya NaT
16
+ data['sold_at'] = pd.to_datetime(data['sold_at'], errors='coerce')
17
+ data['created_at'] = pd.to_datetime(data['created_at'], errors='coerce')
18
+ data['shipped_at'] = pd.to_datetime(data['shipped_at'], errors='coerce')
19
+ data['delivered_at'] = pd.to_datetime(data['delivered_at'], errors='coerce')
20
+ data['returned_at'] = pd.to_datetime(data['returned_at'], errors='coerce')
21
 
22
  # Ambil data date dari data setelahnya.
23
+ data.fillna(method='bfill', inplace=True)
24
  return data
25
 
26
  data_load_state = st.text('Loading data...')
 
158
 
159
  n_forecast = len(y_test) + 8
160
  pred= arima.predict(n_forecast,D=1,seasonal=(1,0,0))
161
+ dates = pd.date_range(y_test.index[-1],periods=n_forecast, freq='M')
162
+ pred= pd.Series(pred, index=dates)
163
 
164
  fig = plt.figure(figsize=(15,5))
165
  plt.title("Prediksi menurut arima untuk 1 tahun kedepan")