Spaces:
Runtime error
Runtime error
Upload summarizer.py
Browse files- skk/summarizer.py +215 -0
skk/summarizer.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
import transformers as hf
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class LitModel(pl.LightningModule):
|
7 |
+
''' pytorch-lightning model '''
|
8 |
+
|
9 |
+
def __init__(self, model, tokenizer, learning_rate = 5e-5):
|
10 |
+
super().__init__()
|
11 |
+
self.model = model
|
12 |
+
self.tokenizer = tokenizer
|
13 |
+
self.learning_rate = learning_rate
|
14 |
+
|
15 |
+
def freeze_embeds(self):
|
16 |
+
''' freeze the positional embedding parameters of the model '''
|
17 |
+
freeze_params(self.model.model.shared)
|
18 |
+
for _ in [self.model.model.encoder, self.model.model.decoder]:
|
19 |
+
freeze_params(_.embed_positions)
|
20 |
+
freeze_params(_.embed_tokens)
|
21 |
+
|
22 |
+
def forward(self, input_ids, **kwargs):
|
23 |
+
return self.model(input_ids, **kwargs)
|
24 |
+
|
25 |
+
def configure_optimizers(self):
|
26 |
+
optimizer = torch.optim.Adam(self.parameters(), lr = self.learning_rate)
|
27 |
+
return optimizer
|
28 |
+
|
29 |
+
def training_step(self, batch, batch_idx):
|
30 |
+
# load the data into variables
|
31 |
+
src_ids, src_mask = batch[0], batch[1]
|
32 |
+
target_ids = batch[2]
|
33 |
+
|
34 |
+
# shift the decoder tokens right
|
35 |
+
decoder_input_ids = shift_tokens_right(target_ids, tokenizer.pad_token_id)
|
36 |
+
|
37 |
+
# run the model and get the logits
|
38 |
+
outputs = self(
|
39 |
+
src_ids,
|
40 |
+
attention_mask = src_mask,
|
41 |
+
decoder_input_ids = decoder_input_ids,
|
42 |
+
use_cache = False
|
43 |
+
)
|
44 |
+
logits = outputs[0]
|
45 |
+
|
46 |
+
# create the loss function
|
47 |
+
f_loss = torch.nn.CrossEntropyLoss(ignore_index = self.tokenizer.pad_token_id)
|
48 |
+
|
49 |
+
# calculate the loss on the unshifted tokens
|
50 |
+
loss = f_loss(logits.view(-1, logits.shape[-1]), target_ids.view(-1))
|
51 |
+
|
52 |
+
return {'loss': loss}
|
53 |
+
|
54 |
+
def validation_step(self, batch, batch_idx):
|
55 |
+
src_ids, src_mask = batch[0], batch[1]
|
56 |
+
target_ids = batch[2]
|
57 |
+
decoder_input_ids = shift_tokens_right(target_ids, tokenizer.pad_token_id)
|
58 |
+
outputs = self(
|
59 |
+
src_ids,
|
60 |
+
attention_mask = src_mask,
|
61 |
+
decoder_input_ids = decoder_input_ids,
|
62 |
+
use_cache = False
|
63 |
+
)
|
64 |
+
logits = outputs[0]
|
65 |
+
f_loss = torch.nn.CrossEntropyLoss(ignore_index = self.tokenizer.pad_token_id)
|
66 |
+
loss = f_loss(logits.view(-1, logits.shape[-1]), target_ids.view(-1))
|
67 |
+
|
68 |
+
self.log('loss', torch.tensor([loss]))
|
69 |
+
|
70 |
+
return {'loss': loss}
|
71 |
+
|
72 |
+
def generate(self, text, min_length = 40, max_length = 256, eval_beams = 4, early_stopping = True):
|
73 |
+
''' generate text '''
|
74 |
+
# generated = self.model.generate(
|
75 |
+
# text,
|
76 |
+
# min_length = min_length,
|
77 |
+
# max_length = max_length,
|
78 |
+
# num_beams = eval_beams,
|
79 |
+
# early_stopping = early_stopping
|
80 |
+
# )
|
81 |
+
generated = self.model.generate(
|
82 |
+
text['input_ids'],
|
83 |
+
attention_mask = text['attention_mask'],
|
84 |
+
use_cache = True,
|
85 |
+
decoder_start_token_id = self.tokenizer.pad_token_id,
|
86 |
+
min_length = min_length,
|
87 |
+
max_length = max_length,
|
88 |
+
num_beams = eval_beams,
|
89 |
+
early_stopping = early_stopping
|
90 |
+
)
|
91 |
+
return [self.tokenizer.decode(
|
92 |
+
w,
|
93 |
+
skip_special_tokens = True,
|
94 |
+
clean_up_tokenization_spaces = True
|
95 |
+
) for w in generated]
|
96 |
+
|
97 |
+
def freeze_params(model):
|
98 |
+
''' freeze layers of model for faster training '''
|
99 |
+
for layer in model.parameters():
|
100 |
+
layer.requires_grade = False
|
101 |
+
|
102 |
+
class SummaryDataModule(pl.LightningDataModule):
|
103 |
+
''' pytorch-lightning dataloading module '''
|
104 |
+
|
105 |
+
def __init__(self, tokenizer, dataframe, batch_size, num_examples = 20000):
|
106 |
+
super().__init__()
|
107 |
+
self.tokenizer = tokenizer
|
108 |
+
self.dataframe = dataframe
|
109 |
+
self.batch_size = batch_size
|
110 |
+
self.num_examples = num_examples
|
111 |
+
|
112 |
+
def prepare_data(self, split = [0.6, 0.2, 0.2]):
|
113 |
+
''' loads and splits data '''
|
114 |
+
self.data = self.dataframe[:self.num_examples]
|
115 |
+
self.train, self.validate, self.test = np.split(
|
116 |
+
self.data.sample(frac = 1),
|
117 |
+
[
|
118 |
+
int(split[0] * len(self.data)),
|
119 |
+
int(sum([split[i] for i in range(2)]) * len(self.data))
|
120 |
+
]
|
121 |
+
)
|
122 |
+
|
123 |
+
def setup(self, stage):
|
124 |
+
self.train = encode_sentences(self.tokenizer, self.train['source'], self.train['target'])
|
125 |
+
self.validate = encode_sentences(self.tokenizer, self.validate['source'], self.validate['target'])
|
126 |
+
self.test = encode_sentences(self.tokenizer, self.test['source'], self.test['target'])
|
127 |
+
|
128 |
+
def train_dataloader(self):
|
129 |
+
dataset = torch.utils.data.TensorDataset(
|
130 |
+
self.train['input_ids'],
|
131 |
+
self.train['attention_mask'],
|
132 |
+
self.train['labels']
|
133 |
+
)
|
134 |
+
train_data = torch.utils.data.DataLoader(
|
135 |
+
dataset,
|
136 |
+
sampler = torch.utils.data.RandomSampler(dataset),
|
137 |
+
batch_size = self.batch_size
|
138 |
+
)
|
139 |
+
return train_data
|
140 |
+
|
141 |
+
def val_dataloader(self):
|
142 |
+
dataset = torch.utils.data.TensorDataset(
|
143 |
+
self.validate['input_ids'],
|
144 |
+
self.validate['attention_mask'],
|
145 |
+
self.validate['labels']
|
146 |
+
)
|
147 |
+
val_data = torch.utils.data.DataLoader(
|
148 |
+
dataset,
|
149 |
+
batch_size = self.batch_size
|
150 |
+
)
|
151 |
+
return val_data
|
152 |
+
|
153 |
+
def test_dataloader(self):
|
154 |
+
dataset = torch.utils.data.TensorDataset(
|
155 |
+
self.test['input_ids'],
|
156 |
+
self.test['attention_mask'],
|
157 |
+
self.test['labels']
|
158 |
+
)
|
159 |
+
test_data = torch.utils.data.DataLoader(
|
160 |
+
dataset,
|
161 |
+
batch_size = self.batch_size
|
162 |
+
)
|
163 |
+
return test_data
|
164 |
+
|
165 |
+
def shift_tokens_right(input_ids, pad_token_id):
|
166 |
+
prev_output_tokens = input_ids.clone()
|
167 |
+
index_of_eos = (input_ids.ne(pad_token_id).sum(dim = 1) - 1).unsqueeze(-1)
|
168 |
+
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
|
169 |
+
prev_output_tokens[:, 1:] = input_ids[:, :-1]
|
170 |
+
return prev_output_tokens
|
171 |
+
|
172 |
+
def encode_sentences(tokenizer, source_sentences, target_sentences, max_length = 128, pad_to_max_length = True, return_tensors = 'pt'):
|
173 |
+
input_ids = []
|
174 |
+
attention_masks = []
|
175 |
+
target_ids = []
|
176 |
+
tokenized_sentences = {}
|
177 |
+
|
178 |
+
for s in source_sentences:
|
179 |
+
encoded_dict = tokenizer(
|
180 |
+
s,
|
181 |
+
max_length = max_length,
|
182 |
+
padding = 'max_length' if pad_to_max_length else None,
|
183 |
+
truncation = True,
|
184 |
+
return_tensors = return_tensors,
|
185 |
+
add_prefix_space = True
|
186 |
+
)
|
187 |
+
input_ids.append(encoded_dict['input_ids'])
|
188 |
+
attention_masks.append(encoded_dict['attention_mask'])
|
189 |
+
|
190 |
+
input_ids = torch.cat(input_ids, dim = 0)
|
191 |
+
attention_masks = torch.cat(attention_masks, dim = 0)
|
192 |
+
|
193 |
+
for s in target_sentences:
|
194 |
+
encoded_dict = tokenizer(
|
195 |
+
s,
|
196 |
+
max_length = max_length,
|
197 |
+
padding = 'max_length' if pad_to_max_length else None,
|
198 |
+
truncation = True,
|
199 |
+
return_tensors = return_tensors,
|
200 |
+
add_prefix_space = True
|
201 |
+
)
|
202 |
+
target_ids.append(encoded_dict['input_ids'])
|
203 |
+
|
204 |
+
target_ids = torch.cat(target_ids, dim = 0)
|
205 |
+
|
206 |
+
batch = {
|
207 |
+
'input_ids': input_ids,
|
208 |
+
'attention_mask': attention_masks,
|
209 |
+
'labels': target_ids
|
210 |
+
}
|
211 |
+
|
212 |
+
return batch
|
213 |
+
|
214 |
+
tokenizer = hf.BartTokenizer.from_pretrained('sshleifer/distilbart-cnn-12-6', add_prefix_space = True)
|
215 |
+
base_model = hf.BartForConditionalGeneration.from_pretrained('sshleifer/distilbart-cnn-12-6')
|