Spaces:
Sleeping
Sleeping
make the app more 'user friendly'
Browse files
app.py
CHANGED
@@ -10,56 +10,56 @@ if gr.NO_RELOAD:
|
|
10 |
|
11 |
DEVICE = 'cpu'
|
12 |
MODELS = [
|
13 |
-
(
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
),
|
23 |
-
(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
),
|
33 |
-
(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
),
|
43 |
-
(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
),
|
53 |
-
(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
),
|
63 |
(
|
64 |
'deberta-v3-base-model_2000',
|
65 |
lambda: BaseTransferLearningModel(
|
@@ -70,58 +70,64 @@ MODELS = [
|
|
70 |
state_dict='src/ckpt/deberta-v3-base-model_4000.pt',
|
71 |
),
|
72 |
),
|
73 |
-
(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
),
|
83 |
-
(
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
),
|
93 |
-
(
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
),
|
103 |
-
(
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
),
|
113 |
]
|
114 |
|
115 |
|
116 |
class WebUI:
|
117 |
|
118 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
119 |
self.models = models
|
120 |
self.device = device
|
121 |
self.is_ready = False
|
122 |
self.model = self.models[0][1]()
|
123 |
self.is_ready = True
|
124 |
self.scraper = GenericScraper()
|
|
|
125 |
|
126 |
def _change_model(self, idx: int) -> str:
|
127 |
if gr.NO_RELOAD:
|
@@ -142,7 +148,9 @@ class WebUI:
|
|
142 |
if self.is_ready == False:
|
143 |
return 'Model is not yet ready!'
|
144 |
output = self.model.predict(text, self.device).detach().cpu().numpy()[0]
|
145 |
-
|
|
|
|
|
146 |
|
147 |
def _scrape(self, url: str) -> str:
|
148 |
try:
|
@@ -173,16 +181,18 @@ class WebUI:
|
|
173 |
)
|
174 |
btn_submit = gr.Button(value='Submit', variant='primary')
|
175 |
with gr.Column():
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
t_out = gr.Textbox(label='Output')
|
185 |
-
|
|
|
186 |
btn_scrape.click(fn=self._scrape, inputs=t_url, outputs=t_inp)
|
187 |
btn_submit.click(fn=self._predict, inputs=t_inp, outputs=t_out)
|
188 |
return ui
|
|
|
10 |
|
11 |
DEVICE = 'cpu'
|
12 |
MODELS = [
|
13 |
+
# (
|
14 |
+
# 'bert-model_1950',
|
15 |
+
# lambda: BaseTransferLearningModel(
|
16 |
+
# 'bert-base-uncased',
|
17 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
18 |
+
# 2,
|
19 |
+
# device=DEVICE,
|
20 |
+
# state_dict='src/ckpt/bert-model_1950.pt',
|
21 |
+
# ),
|
22 |
+
# ),
|
23 |
+
# (
|
24 |
+
# 'bert-model_2000',
|
25 |
+
# lambda: BaseTransferLearningModel(
|
26 |
+
# 'bert-base-uncased',
|
27 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
28 |
+
# 2,
|
29 |
+
# device=DEVICE,
|
30 |
+
# state_dict='src/ckpt/bert-model_2000.pt',
|
31 |
+
# ),
|
32 |
+
# ),
|
33 |
+
# (
|
34 |
+
# 'deberta-base-model_1100',
|
35 |
+
# lambda: BaseTransferLearningModel(
|
36 |
+
# 'microsoft/deberta-base',
|
37 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
38 |
+
# 2,
|
39 |
+
# device=DEVICE,
|
40 |
+
# state_dict='src/ckpt/deberta-base-model_4400.pt',
|
41 |
+
# ),
|
42 |
+
# ),
|
43 |
+
# (
|
44 |
+
# 'deberta-base-model_2000',
|
45 |
+
# lambda: BaseTransferLearningModel(
|
46 |
+
# 'microsoft/deberta-base',
|
47 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
48 |
+
# 2,
|
49 |
+
# device=DEVICE,
|
50 |
+
# state_dict='src/ckpt/deberta-base-model_8000.pt',
|
51 |
+
# ),
|
52 |
+
# ),
|
53 |
+
# (
|
54 |
+
# 'deberta-v3-base-model_1700',
|
55 |
+
# lambda: BaseTransferLearningModel(
|
56 |
+
# 'microsoft/deberta-v3-base',
|
57 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
58 |
+
# 2,
|
59 |
+
# device=DEVICE,
|
60 |
+
# state_dict='src/ckpt/deberta-v3-base-model_3400.pt',
|
61 |
+
# ),
|
62 |
+
# ),
|
63 |
(
|
64 |
'deberta-v3-base-model_2000',
|
65 |
lambda: BaseTransferLearningModel(
|
|
|
70 |
state_dict='src/ckpt/deberta-v3-base-model_4000.pt',
|
71 |
),
|
72 |
),
|
73 |
+
# (
|
74 |
+
# 'distilbert-model_1850',
|
75 |
+
# lambda: BaseTransferLearningModel(
|
76 |
+
# 'distilbert-base-uncased',
|
77 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
78 |
+
# 2,
|
79 |
+
# device=DEVICE,
|
80 |
+
# state_dict='src/ckpt/distilbert-model_1850.pt',
|
81 |
+
# ),
|
82 |
+
# ),
|
83 |
+
# (
|
84 |
+
# 'distilbert-model_2000',
|
85 |
+
# lambda: BaseTransferLearningModel(
|
86 |
+
# 'distilbert-base-uncased',
|
87 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
88 |
+
# 2,
|
89 |
+
# device=DEVICE,
|
90 |
+
# state_dict='src/ckpt/distilbert-model_2000.pt',
|
91 |
+
# ),
|
92 |
+
# ),
|
93 |
+
# (
|
94 |
+
# 'roberta-base-model_1250',
|
95 |
+
# lambda: BaseTransferLearningModel(
|
96 |
+
# 'FacebookAI/roberta-base',
|
97 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
98 |
+
# 2,
|
99 |
+
# device=DEVICE,
|
100 |
+
# state_dict='src/ckpt/roberta-base-model_1250.pt',
|
101 |
+
# ),
|
102 |
+
# ),
|
103 |
+
# (
|
104 |
+
# 'roberta-base-model_2000',
|
105 |
+
# lambda: BaseTransferLearningModel(
|
106 |
+
# 'FacebookAI/roberta-base',
|
107 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
108 |
+
# 2,
|
109 |
+
# device=DEVICE,
|
110 |
+
# state_dict='src/ckpt/roberta-base-model_2000.pt',
|
111 |
+
# ),
|
112 |
+
# ),
|
113 |
]
|
114 |
|
115 |
|
116 |
class WebUI:
|
117 |
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
models: list[(str, Callable)] = [],
|
121 |
+
device: str = 'cpu',
|
122 |
+
debug: bool = False,
|
123 |
+
) -> None:
|
124 |
self.models = models
|
125 |
self.device = device
|
126 |
self.is_ready = False
|
127 |
self.model = self.models[0][1]()
|
128 |
self.is_ready = True
|
129 |
self.scraper = GenericScraper()
|
130 |
+
self.debug = debug
|
131 |
|
132 |
def _change_model(self, idx: int) -> str:
|
133 |
if gr.NO_RELOAD:
|
|
|
148 |
if self.is_ready == False:
|
149 |
return 'Model is not yet ready!'
|
150 |
output = self.model.predict(text, self.device).detach().cpu().numpy()[0]
|
151 |
+
if self.debug:
|
152 |
+
return f'Fake: {output[0]:.10f}, Real: {output[1]:.10f}'
|
153 |
+
return f'We think that this is a {"fake" if output[0] > output[1] else "real"} news article with {max(output[0], output[1]) * 100:.2f}% certainty.'
|
154 |
|
155 |
def _scrape(self, url: str) -> str:
|
156 |
try:
|
|
|
181 |
)
|
182 |
btn_submit = gr.Button(value='Submit', variant='primary')
|
183 |
with gr.Column():
|
184 |
+
if self.debug:
|
185 |
+
ddl_model = gr.Dropdown(
|
186 |
+
label='Model',
|
187 |
+
choices=[model[0] for model in self.models],
|
188 |
+
value=self._change_model(0),
|
189 |
+
type='index',
|
190 |
+
interactive=True,
|
191 |
+
filterable=True,
|
192 |
+
)
|
193 |
t_out = gr.Textbox(label='Output')
|
194 |
+
if self.debug:
|
195 |
+
ddl_model.change(fn=self._change_model, inputs=ddl_model)
|
196 |
btn_scrape.click(fn=self._scrape, inputs=t_url, outputs=t_inp)
|
197 |
btn_submit.click(fn=self._predict, inputs=t_inp, outputs=t_out)
|
198 |
return ui
|