Spaces:
Runtime error
Runtime error
app
Browse files- Decision_Tree.pkl +3 -0
- LGBM.pkl +3 -0
- Lasso.pkl +3 -0
- Logistic_Regression.pkl +3 -0
- Neural_Network.pkl +3 -0
- Pycaret_Best.pkl +3 -0
- Random_Forest.pkl +3 -0
- Shorthills.png +0 -0
- Support_Vector_Machine.pkl +3 -0
- Support_Vector_Machine_Optimized +0 -0
- app.py +8 -7
- logs.log +0 -0
Decision_Tree.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15e19bf1a48e7158163473af66ab56d3216f4141cf6119013fd2fdec56169282
|
3 |
+
size 16075909
|
LGBM.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1a1f8fb981a0fa244f0f9461ad2f3a451d051609df023a82cd3f32171ed4ed2
|
3 |
+
size 2778630
|
Lasso.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cae9f7ca9ee23839a66e47775f67bb79f34fb052a340b929e76e059f494805e
|
3 |
+
size 2147
|
Logistic_Regression.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:663c195b2d85045a5a3e2421fb9757300d9fcd0d3d48c2849e5f8c52edf0e025
|
3 |
+
size 292176
|
Neural_Network.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:430c352614a9a4d2dc79e3eac74dd0f49cc4be01fa6f43afed7ed23fdcdfa981
|
3 |
+
size 1830284
|
Pycaret_Best.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f995fdb8f196096f1d6e9480ad35b60af480702ba5624adc50ad799c157b02c
|
3 |
+
size 112720
|
Random_Forest.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64da1f6e7a4ae0019963f534c153edfc2202fc2cfae9720dff29a989d5ebb4f2
|
3 |
+
size 1087171329
|
Shorthills.png
ADDED
![]() |
Support_Vector_Machine.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d99ed01a0617f698f391d43d3c0828791bed66951654982a2d6341917c72f30
|
3 |
+
size 735512
|
Support_Vector_Machine_Optimized
ADDED
Binary file (736 kB). View file
|
|
app.py
CHANGED
@@ -26,7 +26,7 @@ with col1:
|
|
26 |
with col2:
|
27 |
st.title('Customer Value Prediction Model')
|
28 |
|
29 |
-
train_df
|
30 |
|
31 |
|
32 |
option2 = st.selectbox(
|
@@ -80,6 +80,7 @@ elif option3 == 'PandasProfiling':
|
|
80 |
|
81 |
|
82 |
model_names = [
|
|
|
83 |
"Logistic_Regression",
|
84 |
"Support_Vector_Machine",
|
85 |
"Support_Vector_Machine_Optimized",
|
@@ -87,7 +88,6 @@ model_names = [
|
|
87 |
"Neural_Network",
|
88 |
"Random_Forest",
|
89 |
"Pycaret_Best",
|
90 |
-
"LGBM",
|
91 |
"Lasso"
|
92 |
]
|
93 |
|
@@ -96,19 +96,20 @@ option = st.selectbox(
|
|
96 |
'Select a model to be used',
|
97 |
model_names
|
98 |
)
|
99 |
-
tr_df
|
100 |
model = pickle.load(open(option+'.pkl', 'rb'))
|
101 |
|
102 |
st.write("Model Loaded : ", option)
|
103 |
|
104 |
-
train_X,test_X,train_y,dev_X,val_X,dev_y,val_y,test_y= model_value_prediction.preprocess_inputs(tr_df,
|
105 |
|
106 |
model = model_value_prediction.train(tr_df,option)
|
107 |
-
y_pred =
|
108 |
if option=="LGBM":
|
109 |
-
st.write("LGBM Score:",
|
110 |
elif option=="Pycaret_Best":
|
111 |
predict_model(model)
|
112 |
st.write("Pycaret_Best Score:",pull())
|
113 |
else:
|
114 |
-
st.write("
|
|
|
|
26 |
with col2:
|
27 |
st.title('Customer Value Prediction Model')
|
28 |
|
29 |
+
train_df= model_value_prediction.get_data()
|
30 |
|
31 |
|
32 |
option2 = st.selectbox(
|
|
|
80 |
|
81 |
|
82 |
model_names = [
|
83 |
+
"LGBM",
|
84 |
"Logistic_Regression",
|
85 |
"Support_Vector_Machine",
|
86 |
"Support_Vector_Machine_Optimized",
|
|
|
88 |
"Neural_Network",
|
89 |
"Random_Forest",
|
90 |
"Pycaret_Best",
|
|
|
91 |
"Lasso"
|
92 |
]
|
93 |
|
|
|
96 |
'Select a model to be used',
|
97 |
model_names
|
98 |
)
|
99 |
+
tr_df=model_value_prediction.important_feat(train_df,option)
|
100 |
model = pickle.load(open(option+'.pkl', 'rb'))
|
101 |
|
102 |
st.write("Model Loaded : ", option)
|
103 |
|
104 |
+
train_X,test_X,train_y,dev_X,val_X,dev_y,val_y,test_y= model_value_prediction.preprocess_inputs(tr_df,option)
|
105 |
|
106 |
model = model_value_prediction.train(tr_df,option)
|
107 |
+
y_pred = model_value_prediction.predict(test_X,model,option)
|
108 |
if option=="LGBM":
|
109 |
+
st.write("LGBM Score:",metrics.mean_squared_error(test_y, y_pred,squared=False))
|
110 |
elif option=="Pycaret_Best":
|
111 |
predict_model(model)
|
112 |
st.write("Pycaret_Best Score:",pull())
|
113 |
else:
|
114 |
+
st.write("RMSLE Score:",metrics.mean_squared_error(test_y, y_pred,squared=False))
|
115 |
+
st.write("Poisson Score:",metrics.mean_tweedie_deviance(test_y, y_pred))
|
logs.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|