Amaysood commited on
Commit
13f13ea
·
1 Parent(s): 7043895
Decision_Tree.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15e19bf1a48e7158163473af66ab56d3216f4141cf6119013fd2fdec56169282
3
+ size 16075909
LGBM.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1a1f8fb981a0fa244f0f9461ad2f3a451d051609df023a82cd3f32171ed4ed2
3
+ size 2778630
Lasso.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cae9f7ca9ee23839a66e47775f67bb79f34fb052a340b929e76e059f494805e
3
+ size 2147
Logistic_Regression.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663c195b2d85045a5a3e2421fb9757300d9fcd0d3d48c2849e5f8c52edf0e025
3
+ size 292176
Neural_Network.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:430c352614a9a4d2dc79e3eac74dd0f49cc4be01fa6f43afed7ed23fdcdfa981
3
+ size 1830284
Pycaret_Best.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f995fdb8f196096f1d6e9480ad35b60af480702ba5624adc50ad799c157b02c
3
+ size 112720
Random_Forest.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64da1f6e7a4ae0019963f534c153edfc2202fc2cfae9720dff29a989d5ebb4f2
3
+ size 1087171329
Shorthills.png ADDED
Support_Vector_Machine.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d99ed01a0617f698f391d43d3c0828791bed66951654982a2d6341917c72f30
3
+ size 735512
Support_Vector_Machine_Optimized ADDED
Binary file (736 kB). View file
 
app.py CHANGED
@@ -26,7 +26,7 @@ with col1:
26
  with col2:
27
  st.title('Customer Value Prediction Model')
28
 
29
- train_df,test_df = model_value_prediction.get_data()
30
 
31
 
32
  option2 = st.selectbox(
@@ -80,6 +80,7 @@ elif option3 == 'PandasProfiling':
80
 
81
 
82
  model_names = [
 
83
  "Logistic_Regression",
84
  "Support_Vector_Machine",
85
  "Support_Vector_Machine_Optimized",
@@ -87,7 +88,6 @@ model_names = [
87
  "Neural_Network",
88
  "Random_Forest",
89
  "Pycaret_Best",
90
- "LGBM",
91
  "Lasso"
92
  ]
93
 
@@ -96,19 +96,20 @@ option = st.selectbox(
96
  'Select a model to be used',
97
  model_names
98
  )
99
- tr_df,te_df=model_value_prediction.important_feat(train_df,test_df,option)
100
  model = pickle.load(open(option+'.pkl', 'rb'))
101
 
102
  st.write("Model Loaded : ", option)
103
 
104
- train_X,test_X,train_y,dev_X,val_X,dev_y,val_y,test_y= model_value_prediction.preprocess_inputs(tr_df, te_df,option)
105
 
106
  model = model_value_prediction.train(tr_df,option)
107
- y_pred = model.predict(test_X)
108
  if option=="LGBM":
109
- st.write("LGBM Score:",model.score(test_y, y_pred))
110
  elif option=="Pycaret_Best":
111
  predict_model(model)
112
  st.write("Pycaret_Best Score:",pull())
113
  else:
114
- st.write("RMSE Score:",metrics.mean_squared_log_error(test_y, y_pred,squared=False))
 
 
26
  with col2:
27
  st.title('Customer Value Prediction Model')
28
 
29
+ train_df= model_value_prediction.get_data()
30
 
31
 
32
  option2 = st.selectbox(
 
80
 
81
 
82
  model_names = [
83
+ "LGBM",
84
  "Logistic_Regression",
85
  "Support_Vector_Machine",
86
  "Support_Vector_Machine_Optimized",
 
88
  "Neural_Network",
89
  "Random_Forest",
90
  "Pycaret_Best",
 
91
  "Lasso"
92
  ]
93
 
 
96
  'Select a model to be used',
97
  model_names
98
  )
99
+ tr_df=model_value_prediction.important_feat(train_df,option)
100
  model = pickle.load(open(option+'.pkl', 'rb'))
101
 
102
  st.write("Model Loaded : ", option)
103
 
104
+ train_X,test_X,train_y,dev_X,val_X,dev_y,val_y,test_y= model_value_prediction.preprocess_inputs(tr_df,option)
105
 
106
  model = model_value_prediction.train(tr_df,option)
107
+ y_pred = model_value_prediction.predict(test_X,model,option)
108
  if option=="LGBM":
109
+ st.write("LGBM Score:",metrics.mean_squared_error(test_y, y_pred,squared=False))
110
  elif option=="Pycaret_Best":
111
  predict_model(model)
112
  st.write("Pycaret_Best Score:",pull())
113
  else:
114
+ st.write("RMSLE Score:",metrics.mean_squared_error(test_y, y_pred,squared=False))
115
+ st.write("Poisson Score:",metrics.mean_tweedie_deviance(test_y, y_pred))
logs.log ADDED
The diff for this file is too large to render. See raw diff