nikhil0nk commited on
Commit
efe82c1
1 Parent(s): 6a5b679

logo added

Browse files
Files changed (2) hide show
  1. Shorthills.png +0 -0
  2. app.py +16 -7
Shorthills.png ADDED
app.py CHANGED
@@ -8,11 +8,18 @@ from pybanking.EDA import data_analysis
8
  import sklearn.metrics as metrics
9
  from mlxtend.plotting import plot_confusion_matrix
10
  import streamlit.components.v1 as components
11
- import webbrowser
12
 
13
- st.set_page_config(page_title="Customer Churn Prediction Model")
14
 
15
- st.title('Customer Churn Prediction Model')
 
 
 
 
 
 
 
16
 
17
  df = model_churn.get_data()
18
 
@@ -47,6 +54,12 @@ if option3 == 'SweetViz':
47
  elif option3 == 'DataPrep':
48
  res = analysis_class.dataprep_analysis(df)
49
  res.show_browser()
 
 
 
 
 
 
50
 
51
  elif option3 == 'Pandas Profiling':
52
  res = analysis_class.pandas_analysis(df)
@@ -76,10 +89,6 @@ X, y = model_churn.preprocess_inputs(df, option)
76
  if option2 == 'Upload custom':
77
  model = model_churn.train(df, model)
78
 
79
- # st.subheader('This is the Preprocessed Data')
80
-
81
- # st.dataframe(X.head(5))
82
-
83
  y_pred = model.predict(X)
84
 
85
  st.write("Accuracy:",metrics.accuracy_score(y, y_pred))
 
8
  import sklearn.metrics as metrics
9
  from mlxtend.plotting import plot_confusion_matrix
10
  import streamlit.components.v1 as components
11
+ from PIL import Image
12
 
13
+ st.set_page_config(page_title="Customer Churn Prediction Model", layout="wide")
14
 
15
+ col1,col2 = st.columns([1,2])
16
+
17
+ with col1:
18
+ image = Image.open('Shorthills.png')
19
+ st.image(image)
20
+
21
+ with col2:
22
+ st.title('Customer Churn Prediction Model')
23
 
24
  df = model_churn.get_data()
25
 
 
54
  elif option3 == 'DataPrep':
55
  res = analysis_class.dataprep_analysis(df)
56
  res.show_browser()
57
+ # res.save('DataPrep.html')
58
+ # HtmlFile = open('DataPrep.html', 'r', encoding='utf-8')
59
+ # source_code = HtmlFile.read()
60
+ # with st.expander("See Report"):
61
+ # components.iframe(source_code, height=1000)
62
+
63
 
64
  elif option3 == 'Pandas Profiling':
65
  res = analysis_class.pandas_analysis(df)
 
89
  if option2 == 'Upload custom':
90
  model = model_churn.train(df, model)
91
 
 
 
 
 
92
  y_pred = model.predict(X)
93
 
94
  st.write("Accuracy:",metrics.accuracy_score(y, y_pred))