Kevin Fink
commited on
Commit
·
2a237b2
1
Parent(s):
d1da5ff
dev
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from datasets import load_dataset, concatenate_datasets, load_from_disk
|
|
6 |
import traceback
|
7 |
from sklearn.metrics import accuracy_score
|
8 |
import numpy as np
|
9 |
-
import torch
|
10 |
|
11 |
import os
|
12 |
from huggingface_hub import login
|
@@ -20,14 +19,13 @@ lora_config = LoraConfig(
|
|
20 |
lora_dropout=0.1, # Dropout for LoRA layers
|
21 |
bias="none" # Bias handling
|
22 |
)
|
23 |
-
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny
|
24 |
model = get_peft_model(model, lora_config)
|
25 |
model.gradient_checkpointing_enable()
|
26 |
|
27 |
@spaces.GPU(duration=120)
|
28 |
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
29 |
try:
|
30 |
-
torch.cuda.empty_cache()
|
31 |
def compute_metrics(eval_pred):
|
32 |
logits, labels = eval_pred
|
33 |
predictions = np.argmax(logits, axis=1)
|
@@ -53,7 +51,7 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
53 |
per_device_eval_batch_size=int(batch_size),
|
54 |
num_train_epochs=int(num_epochs),
|
55 |
weight_decay=0.01,
|
56 |
-
gradient_accumulation_steps=int(grad),
|
57 |
max_grad_norm = 1.0,
|
58 |
load_best_model_at_end=True,
|
59 |
metric_for_best_model="accuracy",
|
@@ -84,7 +82,6 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
84 |
train_dataset=tokenized_train_dataset,
|
85 |
eval_dataset=tokenized_test_dataset,
|
86 |
compute_metrics=compute_metrics,
|
87 |
-
#callbacks=[LoggingCallback()],
|
88 |
)
|
89 |
except:
|
90 |
# Load the dataset
|
|
|
6 |
import traceback
|
7 |
from sklearn.metrics import accuracy_score
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
import os
|
11 |
from huggingface_hub import login
|
|
|
19 |
lora_dropout=0.1, # Dropout for LoRA layers
|
20 |
bias="none" # Bias handling
|
21 |
)
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
|
23 |
model = get_peft_model(model, lora_config)
|
24 |
model.gradient_checkpointing_enable()
|
25 |
|
26 |
@spaces.GPU(duration=120)
|
27 |
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
28 |
try:
|
|
|
29 |
def compute_metrics(eval_pred):
|
30 |
logits, labels = eval_pred
|
31 |
predictions = np.argmax(logits, axis=1)
|
|
|
51 |
per_device_eval_batch_size=int(batch_size),
|
52 |
num_train_epochs=int(num_epochs),
|
53 |
weight_decay=0.01,
|
54 |
+
#gradient_accumulation_steps=int(grad),
|
55 |
max_grad_norm = 1.0,
|
56 |
load_best_model_at_end=True,
|
57 |
metric_for_best_model="accuracy",
|
|
|
82 |
train_dataset=tokenized_train_dataset,
|
83 |
eval_dataset=tokenized_test_dataset,
|
84 |
compute_metrics=compute_metrics,
|
|
|
85 |
)
|
86 |
except:
|
87 |
# Load the dataset
|