simplellamaapp / llama_chat_bot.py
shobhitjethani's picture
Update llama_chat_bot.py
4dd8872
# -*- coding: utf-8 -*-
"""Llama chat bot
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1BBWPVOOR0790ZALdTJy_pYV5bFf8KaGp
"""
# curl --proto "=https" --tlsv1.2 -sSf https://sh.rustup.rs | sh
# pip install -e transformers torch accelerate
# pip install -e --upgrade gradio
import transformers
import os
import huggingface_hub
hf_token=os.environ['HF_READ_TOKEN']
print(hf_token)
!huggingface-cli login --token $HF_READ_TOKEN
!huggingface-cli whoami
from transformers import AutoTokenizer
model = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model, token=hf_token)
# tokenizer = AutoTokenizer.from_pretrained(model, token=hf_token)
# pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
from transformers import pipeline
llama_pipeline = pipeline(
"text-generation",
model=model,
torch_dtype="auto",
# torch_dtype=torch.float16,
device_map="auto",
)
SYSTEM_PROMPT = """<s>[INST] <<SYS>>
You are a helpful bot. Your answers are clear and concise.
<</SYS>>
"""
# Formatting function for message and history
def format_message(message: str, history: list, memory_limit: int = 3) -> str:
"""
Formats the message and history for the Llama model.
Parameters:
message (str): Current message to send.
history (list): Past conversation history.
memory_limit (int): Limit on how many past interactions to consider.
Returns:
str: Formatted message string
"""
# always keep len(history) <= memory_limit
if len(history) > memory_limit:
history = history[-memory_limit:]
if len(history) == 0:
return SYSTEM_PROMPT + f"{message} [/INST]"
formatted_message = SYSTEM_PROMPT + f"{history[0][0]} [/INST] {history[0][1]} </s>"
# Handle conversation history
for user_msg, model_answer in history[1:]:
formatted_message += f"<s>[INST] {user_msg} [/INST] {model_answer} </s>"
# Handle the current message
formatted_message += f"<s>[INST] {message} [/INST]"
return formatted_message
# Generate a response from the Llama model
def get_llama_response(message: str, history: list) -> str:
"""
Generates a conversational response from the Llama model.
Parameters:
message (str): User's input message.
history (list): Past conversation history.
Returns:
str: Generated response from the Llama model.
"""
query = format_message(message, history)
response = ""
sequences = llama_pipeline(
query,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=1024,
)
generated_text = sequences[0]['generated_text']
response = generated_text[len(query):] # Remove the prompt from the output
print("Chatbot:", response.strip())
return response.strip()
import gradio as gr
gr.ChatInterface(get_llama_response).launch()