Add application file
Browse files
GRAP.png
ADDED
logo.png
ADDED
main.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.schema import Document
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.vectorstores import Neo4jVector
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
10 |
+
from langchain.graphs import Neo4jGraph
|
11 |
+
from langchain_experimental.graph_transformers import LLMGraphTransformer
|
12 |
+
from langchain.chains.graph_qa.cypher import GraphCypherQAChain
|
13 |
+
import streamlit as st
|
14 |
+
import tempfile
|
15 |
+
from neo4j import GraphDatabase
|
16 |
+
|
17 |
+
def main():
|
18 |
+
st.set_page_config(
|
19 |
+
layout="wide",
|
20 |
+
page_title="Graphy v1",
|
21 |
+
page_icon=":graph:"
|
22 |
+
)
|
23 |
+
st.sidebar.image('GRAP.png', use_column_width=True)
|
24 |
+
with st.sidebar.expander("Expand Me"):
|
25 |
+
st.markdown("""
|
26 |
+
This application allows you to upload a PDF file, extract its content into a Neo4j graph database, and perform queries using natural language.
|
27 |
+
It leverages LangChain and OpenAI's GPT models to generate Cypher queries that interact with the Neo4j database in real-time.
|
28 |
+
""")
|
29 |
+
st.title("Graphy: Realtime GraphRAG App")
|
30 |
+
|
31 |
+
load_dotenv()
|
32 |
+
|
33 |
+
# Set OpenAI API key
|
34 |
+
if 'OPENAI_API_KEY' not in st.session_state:
|
35 |
+
st.sidebar.subheader("OpenAI API Key")
|
36 |
+
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:", type='password')
|
37 |
+
if openai_api_key:
|
38 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
39 |
+
st.session_state['OPENAI_API_KEY'] = openai_api_key
|
40 |
+
st.sidebar.success("OpenAI API Key set successfully.")
|
41 |
+
embeddings = OpenAIEmbeddings()
|
42 |
+
llm = ChatOpenAI(model_name="gpt-4o") # Use model that supports function calling
|
43 |
+
st.session_state['embeddings'] = embeddings
|
44 |
+
st.session_state['llm'] = llm
|
45 |
+
else:
|
46 |
+
embeddings = st.session_state['embeddings']
|
47 |
+
llm = st.session_state['llm']
|
48 |
+
|
49 |
+
# Initialize variables
|
50 |
+
neo4j_url = None
|
51 |
+
neo4j_username = None
|
52 |
+
neo4j_password = None
|
53 |
+
graph = None
|
54 |
+
|
55 |
+
# Set Neo4j connection details
|
56 |
+
if 'neo4j_connected' not in st.session_state:
|
57 |
+
st.sidebar.subheader("Connect to Neo4j Database")
|
58 |
+
neo4j_url = st.sidebar.text_input("Neo4j URL:", value="neo4j+s://<your-neo4j-url>")
|
59 |
+
neo4j_username = st.sidebar.text_input("Neo4j Username:", value="neo4j")
|
60 |
+
neo4j_password = st.sidebar.text_input("Neo4j Password:", type='password')
|
61 |
+
connect_button = st.sidebar.button("Connect")
|
62 |
+
if connect_button and neo4j_password:
|
63 |
+
try:
|
64 |
+
graph = Neo4jGraph(
|
65 |
+
url=neo4j_url,
|
66 |
+
username=neo4j_username,
|
67 |
+
password=neo4j_password
|
68 |
+
)
|
69 |
+
st.session_state['graph'] = graph
|
70 |
+
st.session_state['neo4j_connected'] = True
|
71 |
+
# Store connection parameters for later use
|
72 |
+
st.session_state['neo4j_url'] = neo4j_url
|
73 |
+
st.session_state['neo4j_username'] = neo4j_username
|
74 |
+
st.session_state['neo4j_password'] = neo4j_password
|
75 |
+
st.sidebar.success("Connected to Neo4j database.")
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Failed to connect to Neo4j: {e}")
|
78 |
+
else:
|
79 |
+
graph = st.session_state['graph']
|
80 |
+
neo4j_url = st.session_state['neo4j_url']
|
81 |
+
neo4j_username = st.session_state['neo4j_username']
|
82 |
+
neo4j_password = st.session_state['neo4j_password']
|
83 |
+
|
84 |
+
# Ensure that the Neo4j connection is established before proceeding
|
85 |
+
if graph is not None:
|
86 |
+
# File uploader
|
87 |
+
uploaded_file = st.file_uploader("Please select a PDF file.", type="pdf")
|
88 |
+
|
89 |
+
if uploaded_file is not None and 'qa' not in st.session_state:
|
90 |
+
with st.spinner("Processing the PDF..."):
|
91 |
+
# Save uploaded file to temporary file
|
92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
93 |
+
tmp_file.write(uploaded_file.read())
|
94 |
+
tmp_file_path = tmp_file.name
|
95 |
+
|
96 |
+
# Load and split the PDF
|
97 |
+
loader = PyPDFLoader(tmp_file_path)
|
98 |
+
pages = loader.load_and_split()
|
99 |
+
|
100 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=40)
|
101 |
+
docs = text_splitter.split_documents(pages)
|
102 |
+
|
103 |
+
lc_docs = []
|
104 |
+
for doc in docs:
|
105 |
+
lc_docs.append(Document(page_content=doc.page_content.replace("\n", ""),
|
106 |
+
metadata={'source': uploaded_file.name}))
|
107 |
+
|
108 |
+
# Clear the graph database
|
109 |
+
cypher = """
|
110 |
+
MATCH (n)
|
111 |
+
DETACH DELETE n;
|
112 |
+
"""
|
113 |
+
graph.query(cypher)
|
114 |
+
|
115 |
+
# Define allowed nodes and relationships
|
116 |
+
allowed_nodes = ["Patient", "Disease", "Medication", "Test", "Symptom", "Doctor"]
|
117 |
+
allowed_relationships = ["HAS_DISEASE", "TAKES_MEDICATION", "UNDERWENT_TEST", "HAS_SYMPTOM", "TREATED_BY"]
|
118 |
+
|
119 |
+
# Transform documents into graph documents
|
120 |
+
transformer = LLMGraphTransformer(
|
121 |
+
llm=llm,
|
122 |
+
allowed_nodes=allowed_nodes,
|
123 |
+
allowed_relationships=allowed_relationships,
|
124 |
+
node_properties=False,
|
125 |
+
relationship_properties=False
|
126 |
+
)
|
127 |
+
|
128 |
+
graph_documents = transformer.convert_to_graph_documents(lc_docs)
|
129 |
+
graph.add_graph_documents(graph_documents, include_source=True)
|
130 |
+
|
131 |
+
# Use the stored connection parameters
|
132 |
+
index = Neo4jVector.from_existing_graph(
|
133 |
+
embedding=embeddings,
|
134 |
+
url=neo4j_url,
|
135 |
+
username=neo4j_username,
|
136 |
+
password=neo4j_password,
|
137 |
+
database="neo4j",
|
138 |
+
node_label="Patient", # Adjust node_label as needed
|
139 |
+
text_node_properties=["id", "text"],
|
140 |
+
embedding_node_property="embedding",
|
141 |
+
index_name="vector_index",
|
142 |
+
keyword_index_name="entity_index",
|
143 |
+
search_type="hybrid"
|
144 |
+
)
|
145 |
+
|
146 |
+
st.success(f"{uploaded_file.name} preparation is complete.")
|
147 |
+
|
148 |
+
# Retrieve the graph schema
|
149 |
+
schema = graph.get_schema
|
150 |
+
|
151 |
+
# Set up the QA chain
|
152 |
+
template = """
|
153 |
+
Task: Generate a Cypher statement to query the graph database.
|
154 |
+
|
155 |
+
Instructions:
|
156 |
+
Use only relationship types and properties provided in schema.
|
157 |
+
Do not use other relationship types or properties that are not provided.
|
158 |
+
|
159 |
+
schema:
|
160 |
+
{schema}
|
161 |
+
|
162 |
+
Note: Do not include explanations or apologies in your answers.
|
163 |
+
Do not answer questions that ask anything other than creating Cypher statements.
|
164 |
+
Do not include any text other than generated Cypher statements.
|
165 |
+
|
166 |
+
Question: {question}"""
|
167 |
+
|
168 |
+
question_prompt = PromptTemplate(
|
169 |
+
template=template,
|
170 |
+
input_variables=["schema", "question"]
|
171 |
+
)
|
172 |
+
|
173 |
+
qa = GraphCypherQAChain.from_llm(
|
174 |
+
llm=llm,
|
175 |
+
graph=graph,
|
176 |
+
cypher_prompt=question_prompt,
|
177 |
+
verbose=True,
|
178 |
+
allow_dangerous_requests=True
|
179 |
+
)
|
180 |
+
st.session_state['qa'] = qa
|
181 |
+
else:
|
182 |
+
st.warning("Please connect to the Neo4j database before you can upload a PDF.")
|
183 |
+
|
184 |
+
if 'qa' in st.session_state:
|
185 |
+
st.subheader("Ask a Question")
|
186 |
+
with st.form(key='question_form'):
|
187 |
+
question = st.text_input("Enter your question:")
|
188 |
+
submit_button = st.form_submit_button(label='Submit')
|
189 |
+
|
190 |
+
if submit_button and question:
|
191 |
+
with st.spinner("Generating answer..."):
|
192 |
+
res = st.session_state['qa'].invoke({"query": question})
|
193 |
+
st.write("\n**Answer:**\n" + res['result'])
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
main()
|
197 |
+
|
198 |
+
|
199 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
sentence-transformers
|
4 |
+
langchain-experimental
|
5 |
+
neo4j
|
6 |
+
pypdf
|
7 |
+
python-dotenv
|
8 |
+
langchain_openai
|
9 |
+
streamlit
|