BrandScan / app.py
shivanis14's picture
Update app.py
0ed1dac verified
raw
history blame
10.5 kB
import os
import torch
import cv2
import instaloader
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from dotenv import load_dotenv
from typing import Optional, List, Dict, Union
import streamlit as st
def download_instagram_reels(hashtag, num_reels=1, username="your_username", password="your_password"):
# Remove previous downloads if they exist
os.system("rm -rf downloaded_reels")
os.makedirs("downloaded_reels", exist_ok=True)
loader = instaloader.Instaloader(download_videos=True, download_video_thumbnails=True, download_comments=True)
try:
# Login to Instagram
loader.login(username, password)
# Get posts by hashtag
posts = instaloader.Hashtag.from_name(loader.context, hashtag).get_posts()
reel_urls = []
for post in posts:
if post.is_video:
reel_urls.append(post.url)
if len(reel_urls) >= num_reels:
break
for reel_url in reel_urls:
shortcode = reel_url.split('/')[-2]
post = instaloader.Post.from_shortcode(loader.context, shortcode)
loader.download_post(post, target='downloaded_reels')
# Find the video file name
video_files = [f for f in os.listdir('downloaded_reels') if f.endswith('.mp4')]
if not video_files:
raise ValueError("No video file found in the downloaded reels.")
return [os.path.join('downloaded_reels', video_files[i]) for i in range(0, len(video_files))], reel_urls
except Exception as e:
print(f"Error downloading reels: {e}")
return [], []
def parse_query_with_groq(
query: str,
groq_api_key: str,
seed: int = 42,
llama_model: str = "llama-3.2-11b-text-preview"
) -> Optional[str]:
"""
Enhanced sentiment analysis with Groq API
Args:
query: Input text for sentiment analysis
groq_api_key: API key for Groq
seed: Random seed for reproducibility
llama_model: Model identifier
"""
url = "https://api.groq.com/openai/v1/chat/completions"
# Normalize query
#query = ' '.join(query.lower().split())
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json"
}
system_message = """You are a precise sentiment analysis assistant.
Analyze the user_prompt and provide a JSON-formatted list of objects, where each object contains:
- sentiment_score: a float between -1 (very negative) and 1 (very positive)
- frame_index: the corresponding frame index
Strictly follow this JSON format:
[
{"sentiment_score": <float>, "frame_index": <int>},
...
]
"""
payload = {
"model": llama_model,
"response_format": {
"type": "json_schema",
"json_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"sentiment_score": {"type": "number"},
"frame_index": {"type": "integer"}
},
"required": ["sentiment_score", "frame_index"]
}
}
},
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": query}
],
"temperature": 0,
"max_tokens": 300,
"seed": seed
}
try:
response = requests.post(url, headers=headers, json=payload, timeout=30)
response.raise_for_status()
print(f"DEBUG : Raw Response is {response}")
parsed_response = response.json()['choices'][0]['message']['content']
print(f"DEBUG : Raw Response is {parsed_response}")
return parsed_response
except Exception as e:
print(f"Sentiment Analysis Error: {e}")
return None
def extract_frames(video_path, output_folder, fps=1):
# Create the output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video was opened successfully
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}")
return
# Get the frames per second of the video
video_fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the interval between frames to capture based on desired fps
frame_interval = int(video_fps / fps)
count = 0
frame_count = 0
time_stamps = []
while True:
# Read a frame from the video
ret, frame = cap.read()
# Break the loop if there are no more frames
if not ret:
break
# Save every 'frame_interval' frame
if count % frame_interval == 0:
frame_filename = os.path.join(output_folder, f"image{frame_count}.jpg")
cv2.imwrite(frame_filename, frame)
print(f"Extracted: {frame_filename}")
frame_count += 1
time_stamps.append(count/video_fps)
count += 1
# Release the video capture object
cap.release()
print("Frame extraction completed.")
return frame_count, time_stamps
def download_instagram_reel_old(reel_url, username="shivani.sharma2814@gmail.com", password="instagram@123"):
# Remove previous downloads if they exist
os.system("rm -rf downloaded_reels")
os.makedirs("downloaded_reels", exist_ok=True)
# Create an instance of Instaloader
print(f"Creating instance of instaloader")
loader = instaloader.Instaloader(
download_videos=True,
download_video_thumbnails=True,
download_comments=True
)
try:
# Login to Instagram
loader.login(username, password)
# Extract the shortcode from the URL
shortcode = reel_url.split('/')[-2]
# Download the reel using the shortcode
post = instaloader.Post.from_shortcode(loader.context, shortcode)
loader.download_post(post, target='downloaded_reels')
# Extract comments
comments = post.get_comments()
print(f"Comments are : {comments}")
for comment in comments:
print(f"{comment.owner.username}: {comment.text}")
# Find the video file name
video_files = [f for f in os.listdir('downloaded_reels') if f.endswith('.mp4')]
if not video_files:
raise ValueError("No video file found in the downloaded reels.")
return os.path.join('downloaded_reels', video_files[0])
except Exception as e:
print(f"Error downloading reel: {e}")
return None
def analyze_frames_with_florence(image_folder, timestamps):
# Set up device and dtype
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load Florence-2 model
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch_dtype,
trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
prompt = "<DETAILED_CAPTION>"
# Collect frame analysis results
frame_analyses = []
# Iterate through all images in the specified folder
N = len(os.listdir(image_folder)) # Count number of images in the folder
for i in range(N):
image_path = os.path.join(image_folder, f"image{i}.jpg")
image = Image.open(image_path)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=prompt,
image_size=(image.width, image.height)
)
frame_analyses.append({
'Frame_Index': i,
'Caption': parsed_answer
})
print(f"Frame {i}, TimeStamp {timestamps[i]} sec : {parsed_answer}")
return frame_analyses
def main():
# Specify the URL of the reel
reel_url = "https://www.instagram.com/purnagummies/reel/C7RRVstqtwY/"
fps = 0.5
# Download the reel
st.title("BrandScan")
hashtag = st.text_input("Enter the hashtag (without #):", "purnagummies")
if st.button("Download Reels"):
if hashtag:
with st.spinner("Downloading reels..."):
video_paths, reel_urls = download_instagram_reels(hashtag)
if reel_urls:
st.success(f"Downloaded {len(video_paths)} reels:")
for url in reel_urls:
st.write(url)
else:
st.error("No reels found or an error occurred.")
else:
st.error("Please enter a valid hashtag.")
#video_path = download_instagram_reel(reel_urls[0])
if len(video_paths) == 0:
print("Failed to download the reel.")
return
#video_path
video_path = video_paths[0]
# Collect images from the video
image_folder = "downloaded_reels/images"
os.makedirs(image_folder, exist_ok=True)
# Extract frames from the video
N, timestamps = extract_frames(video_path, image_folder, fps)
print(f"Analyzing video {video_path} with {N} frames extracted at {fps} frames per second")
# Analyze frames with Florence-2
frame_analyses = analyze_frames_with_florence(image_folder, timestamps)
# Optional: You can further process or store the frame_analyses as needed
print("Frame analysis completed.")
frame_analyses_str = "<Frame_Index>; <Description>\n"
for item in frame_analyses:
frame_analyses_str += item['Frame_Index'] + "; " + item['Caption'] + "\n"
print(frame_analyses_str)
sentiment_analysis = parse_query_with_groq(frame_analyses_str, os.getenv("GROQ_API_KEY"))
print("Sentiment Analysis on the video:")
print(sentiment_analysis)
if __name__ == "__main__":
main()