Spaces:
Sleeping
Sleeping
import tempfile | |
from argparse import Namespace | |
from pathlib import Path | |
import gradio as gr | |
import soundfile as sf | |
import torch | |
from matcha.cli import (MATCHA_URLS, VOCODER_URLS, assert_model_downloaded, | |
get_device, load_matcha, load_vocoder, process_text, | |
to_waveform) | |
from matcha.utils.utils import get_user_data_dir, plot_tensor | |
LOCATION = Path(get_user_data_dir()) | |
args = Namespace( | |
cpu=False, | |
model="matcha_ljspeech", | |
vocoder="hifigan_T2_v1", | |
spk=0, | |
) | |
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731 | |
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731 | |
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png" | |
RADIO_OPTIONS = { | |
"Multi Speaker (VCTK)": { | |
"model": "matcha_vctk", | |
"vocoder": "hifigan_univ_v1", | |
}, | |
"Single Speaker (LJ Speech)": { | |
"model": "matcha_ljspeech", | |
"vocoder": "hifigan_T2_v1", | |
}, | |
} | |
# Ensure all the required models are downloaded | |
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"]) | |
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"]) | |
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"]) | |
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"]) | |
# get device | |
device = get_device(args) | |
# Load default models | |
matcha_ljspeech = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device) | |
hifigan_T2_v1, hifigan_T2_v1_denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device) | |
matcha_vctk = load_matcha("matcha_vctk", MATCHA_TTS_LOC("matcha_vctk"), device) | |
hifigan_univ_v1, hifigan_univ_v1_denoiser = load_vocoder("hifigan_univ_v1", VOCODER_LOC("hifigan_univ_v1"), device) | |
def load_model_ui(model_type, textbox): | |
model_name = RADIO_OPTIONS[model_type]["model"] | |
if model_name == "matcha_ljspeech": | |
spk_slider = gr.update(visible=False, value=-1) | |
single_speaker_examples = gr.update(visible=True) | |
multi_speaker_examples = gr.update(visible=False) | |
length_scale = gr.update(value=0.95) | |
else: | |
spk_slider = gr.update(visible=True, value=0) | |
single_speaker_examples = gr.update(visible=False) | |
multi_speaker_examples = gr.update(visible=True) | |
length_scale = gr.update(value=0.85) | |
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples, length_scale | |
def process_text_gradio(text): | |
output = process_text(1, text, device) | |
return output["x_phones"][1::2], output["x"], output["x_lengths"] | |
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk): | |
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None | |
if spk is None: | |
output = matcha_ljspeech.synthesise( | |
text, | |
text_length, | |
n_timesteps=n_timesteps, | |
temperature=temperature, | |
spks=None, | |
length_scale=length_scale, | |
) | |
output["waveform"] = to_waveform(output["mel"], hifigan_T2_v1, hifigan_T2_v1_denoiser) | |
else: | |
output = matcha_vctk.synthesise( | |
text, | |
text_length, | |
n_timesteps=n_timesteps, | |
temperature=temperature, | |
spks=spk, | |
length_scale=length_scale, | |
) | |
output["waveform"] = to_waveform(output["mel"], hifigan_univ_v1, hifigan_univ_v1_denoiser) | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
sf.write(fp.name, output["waveform"], 22050, "PCM_24") | |
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy()) | |
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk): | |
phones, text, text_lengths = process_text_gradio(text) | |
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk) | |
return phones, audio, mel_spectrogram | |
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1): | |
phones, text, text_lengths = process_text_gradio(text) | |
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk) | |
return phones, audio, mel_spectrogram | |
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching | |
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/) | |
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method: | |
* Is probabilistic | |
* Has compact memory footprint | |
* Sounds highly natural | |
* Is very fast to synthesise from | |
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199). | |
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models. | |
Cached examples are available at the bottom of the page. | |
Note: Synthesis speed may be slower than in our paper due to I/O latency and because this instance runs on CPUs. | |
""" | |
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo: | |
processed_text = gr.State(value=None) | |
processed_text_len = gr.State(value=None) | |
with gr.Box(): | |
with gr.Row(): | |
gr.Markdown(description, scale=3) | |
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False) | |
with gr.Box(): | |
radio_options = list(RADIO_OPTIONS.keys()) | |
model_type = gr.Radio( | |
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False | |
) | |
with gr.Row(): | |
gr.Markdown("# Text Input") | |
with gr.Row(): | |
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3) | |
spk_slider = gr.Slider( | |
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1 | |
) | |
with gr.Row(): | |
gr.Markdown("### Hyper parameters") | |
with gr.Row(): | |
n_timesteps = gr.Slider( | |
label="Number of ODE steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=10, | |
interactive=True, | |
) | |
length_scale = gr.Slider( | |
label="Length scale (Speaking rate)", | |
minimum=0.5, | |
maximum=1.5, | |
step=0.05, | |
value=1.0, | |
interactive=True, | |
) | |
mel_temp = gr.Slider( | |
label="Sampling temperature", | |
minimum=0.00, | |
maximum=2.001, | |
step=0.16675, | |
value=0.667, | |
interactive=True, | |
) | |
synth_btn = gr.Button("Synthesise") | |
with gr.Box(): | |
with gr.Row(): | |
gr.Markdown("### Phonetised text") | |
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text") | |
with gr.Box(): | |
with gr.Row(): | |
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram") | |
# with gr.Row(): | |
audio = gr.Audio(interactive=False, label="Audio") | |
with gr.Row(visible=False) as example_row_lj_speech: | |
examples = gr.Examples( # pylint: disable=unused-variable | |
examples=[ | |
[ | |
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.", | |
50, | |
0.677, | |
0.95, | |
], | |
[ | |
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
2, | |
0.677, | |
0.95, | |
], | |
[ | |
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
4, | |
0.677, | |
0.95, | |
], | |
[ | |
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
10, | |
0.677, | |
0.95, | |
], | |
[ | |
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
50, | |
0.677, | |
0.95, | |
], | |
[ | |
"The narrative of these events is based largely on the recollections of the participants.", | |
10, | |
0.677, | |
0.95, | |
], | |
[ | |
"The jury did not believe him, and the verdict was for the defendants.", | |
10, | |
0.677, | |
0.95, | |
], | |
], | |
fn=ljspeech_example_cacher, | |
inputs=[text, n_timesteps, mel_temp, length_scale], | |
outputs=[phonetised_text, audio, mel_spectrogram], | |
cache_examples=True, | |
) | |
with gr.Row() as example_row_multispeaker: | |
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable | |
examples=[ | |
[ | |
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!", | |
10, | |
0.677, | |
0.85, | |
0, | |
], | |
[ | |
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!", | |
10, | |
0.677, | |
0.85, | |
16, | |
], | |
[ | |
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!", | |
50, | |
0.677, | |
0.85, | |
44, | |
], | |
[ | |
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!", | |
50, | |
0.677, | |
0.85, | |
45, | |
], | |
[ | |
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!", | |
4, | |
0.677, | |
0.85, | |
58, | |
], | |
], | |
fn=multispeaker_example_cacher, | |
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider], | |
outputs=[phonetised_text, audio, mel_spectrogram], | |
cache_examples=True, | |
label="Multi Speaker Examples", | |
) | |
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then( | |
load_model_ui, | |
inputs=[model_type, text], | |
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale], | |
) | |
synth_btn.click( | |
fn=process_text_gradio, | |
inputs=[ | |
text, | |
], | |
outputs=[phonetised_text, processed_text, processed_text_len], | |
api_name="matcha_tts", | |
queue=True, | |
).then( | |
fn=synthesise_mel, | |
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider], | |
outputs=[audio, mel_spectrogram], | |
) | |
demo.queue(concurrency_count=5).launch() | |