Matcha-TTS / app.py
Shivam Mehta
Adding multispeaker support for huggingface space
23f59c4
raw
history blame
12.2 kB
import tempfile
from argparse import Namespace
from pathlib import Path
import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (MATCHA_URLS, VOCODER_URLS, assert_model_downloaded,
get_device, load_matcha, load_vocoder, process_text,
to_waveform)
from matcha.utils.utils import get_user_data_dir, plot_tensor
LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=False,
model="matcha_ljspeech",
vocoder="hifigan_T2_v1",
spk=0,
)
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
RADIO_OPTIONS = {
"Multi Speaker (VCTK)": {
"model": "matcha_vctk",
"vocoder": "hifigan_univ_v1",
},
"Single Speaker (LJ Speech)": {
"model": "matcha_ljspeech",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
# get device
device = get_device(args)
# Load default models
matcha_ljspeech = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
hifigan_T2_v1, hifigan_T2_v1_denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
matcha_vctk = load_matcha("matcha_vctk", MATCHA_TTS_LOC("matcha_vctk"), device)
hifigan_univ_v1, hifigan_univ_v1_denoiser = load_vocoder("hifigan_univ_v1", VOCODER_LOC("hifigan_univ_v1"), device)
def load_model_ui(model_type, textbox):
model_name = RADIO_OPTIONS[model_type]["model"]
if model_name == "matcha_ljspeech":
spk_slider = gr.update(visible=False, value=-1)
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
spk_slider = gr.update(visible=True, value=0)
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples, length_scale
@torch.inference_mode()
def process_text_gradio(text):
output = process_text(1, text, device)
return output["x_phones"][1::2], output["x"], output["x_lengths"]
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
if spk is None:
output = matcha_ljspeech.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=None,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], hifigan_T2_v1, hifigan_T2_v1_denoiser)
else:
output = matcha_vctk.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], hifigan_univ_v1, hifigan_univ_v1_denoiser)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
* Is probabilistic
* Has compact memory footprint
* Sounds highly natural
* Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
Cached examples are available at the bottom of the page.
"""
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
processed_text = gr.State(value=None)
processed_text_len = gr.State(value=None)
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
)
with gr.Row():
gr.Markdown("# Text Input")
with gr.Row():
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
spk_slider = gr.Slider(
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
)
with gr.Row():
gr.Markdown("### Hyper parameters")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=1,
maximum=100,
step=1,
value=10,
interactive=True,
)
length_scale = gr.Slider(
label="Length scale (Speaking rate)",
minimum=0.5,
maximum=1.5,
step=0.05,
value=1.0,
interactive=True,
)
mel_temp = gr.Slider(
label="Sampling temperature",
minimum=0.00,
maximum=2.001,
step=0.16675,
value=0.667,
interactive=True,
)
synth_btn = gr.Button("Synthesise")
with gr.Box():
with gr.Row():
gr.Markdown("### Phonetised text")
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row(visible=False) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
50,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
2,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
4,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
10,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
50,
0.677,
0.95,
],
[
"The narrative of these events is based largely on the recollections of the participants.",
10,
0.677,
0.95,
],
[
"The jury did not believe him, and the verdict was for the defendants.",
10,
0.677,
0.95,
],
],
fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
with gr.Row() as example_row_multispeaker:
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
0,
],
[
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
16,
],
[
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
44,
],
[
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
45,
],
[
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
4,
0.677,
0.85,
58,
],
],
fn=multispeaker_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
label="Multi Speaker Examples",
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
text,
],
outputs=[phonetised_text, processed_text, processed_text_len],
api_name="matcha_tts",
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[audio, mel_spectrogram],
)
demo.queue(concurrency_count=5).launch(debug=True)