Spaces:
Runtime error
Runtime error
from typing import Any | |
import torch | |
from lightning import LightningModule | |
from torchmetrics import MaxMetric, MeanMetric | |
from torchmetrics.classification.accuracy import Accuracy | |
class MNISTLitModule(LightningModule): | |
"""Example of LightningModule for MNIST classification. | |
A LightningModule organizes your PyTorch code into 6 sections: | |
- Initialization (__init__) | |
- Train Loop (training_step) | |
- Validation loop (validation_step) | |
- Test loop (test_step) | |
- Prediction Loop (predict_step) | |
- Optimizers and LR Schedulers (configure_optimizers) | |
Docs: | |
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html | |
""" | |
def __init__( | |
self, | |
net: torch.nn.Module, | |
optimizer: torch.optim.Optimizer, | |
scheduler: torch.optim.lr_scheduler, | |
): | |
super().__init__() | |
# this line allows to access init params with 'self.hparams' attribute | |
# also ensures init params will be stored in ckpt | |
self.save_hyperparameters(logger=False) | |
self.net = net | |
# loss function | |
self.criterion = torch.nn.CrossEntropyLoss() | |
# metric objects for calculating and averaging accuracy across batches | |
self.train_acc = Accuracy(task="multiclass", num_classes=10) | |
self.val_acc = Accuracy(task="multiclass", num_classes=10) | |
self.test_acc = Accuracy(task="multiclass", num_classes=10) | |
# for averaging loss across batches | |
self.train_loss = MeanMetric() | |
self.val_loss = MeanMetric() | |
self.test_loss = MeanMetric() | |
# for tracking best so far validation accuracy | |
self.val_acc_best = MaxMetric() | |
def forward(self, x: torch.Tensor): | |
return self.net(x) | |
def on_train_start(self): | |
# by default lightning executes validation step sanity checks before training starts, | |
# so it's worth to make sure validation metrics don't store results from these checks | |
self.val_loss.reset() | |
self.val_acc.reset() | |
self.val_acc_best.reset() | |
def model_step(self, batch: Any): | |
x, y = batch | |
logits = self.forward(x) | |
loss = self.criterion(logits, y) | |
preds = torch.argmax(logits, dim=1) | |
return loss, preds, y | |
def training_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.model_step(batch) | |
# update and log metrics | |
self.train_loss(loss) | |
self.train_acc(preds, targets) | |
self.log("train/loss", self.train_loss, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("train/acc", self.train_acc, on_step=False, on_epoch=True, prog_bar=True) | |
# return loss or backpropagation will fail | |
return loss | |
def on_train_epoch_end(self): | |
pass | |
def validation_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.model_step(batch) | |
# update and log metrics | |
self.val_loss(loss) | |
self.val_acc(preds, targets) | |
self.log("val/loss", self.val_loss, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("val/acc", self.val_acc, on_step=False, on_epoch=True, prog_bar=True) | |
def on_validation_epoch_end(self): | |
acc = self.val_acc.compute() # get current val acc | |
self.val_acc_best(acc) # update best so far val acc | |
# log `val_acc_best` as a value through `.compute()` method, instead of as a metric object | |
# otherwise metric would be reset by lightning after each epoch | |
self.log("val/acc_best", self.val_acc_best.compute(), sync_dist=True, prog_bar=True) | |
def test_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.model_step(batch) | |
# update and log metrics | |
self.test_loss(loss) | |
self.test_acc(preds, targets) | |
self.log("test/loss", self.test_loss, on_step=False, on_epoch=True, prog_bar=True) | |
self.log("test/acc", self.test_acc, on_step=False, on_epoch=True, prog_bar=True) | |
def on_test_epoch_end(self): | |
pass | |
def configure_optimizers(self): | |
"""Choose what optimizers and learning-rate schedulers to use in your optimization. | |
Normally you'd need one. But in the case of GANs or similar you might have multiple. | |
Examples: | |
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html#configure-optimizers | |
""" | |
optimizer = self.hparams.optimizer(params=self.parameters()) | |
if self.hparams.scheduler is not None: | |
scheduler = self.hparams.scheduler(optimizer=optimizer) | |
return { | |
"optimizer": optimizer, | |
"lr_scheduler": { | |
"scheduler": scheduler, | |
"monitor": "val/loss", | |
"interval": "epoch", | |
"frequency": 1, | |
}, | |
} | |
return {"optimizer": optimizer} | |
if __name__ == "__main__": | |
_ = MNISTLitModule(None, None, None) | |