shivam9980 commited on
Commit
b79b0fa
1 Parent(s): 55fa764

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -11
app.py CHANGED
@@ -1,12 +1,14 @@
1
  # Load model directly
2
  import streamlit as st
3
-
4
- from peft import AutoPeftModelForCausalLM
5
- from transformers import AutoTokenizer
6
- model = AutoPeftModelForCausalLM.from_pretrained(
7
- "shivam9980/mistral-7b-news", # YOUR MODEL YOU USED FOR TRAINING
8
- load_in_4bit = True,)
9
- tokenizer = AutoTokenizer.from_pretrained("shivam9980/mistral-7b-news")
 
 
10
 
11
  # alpaca_prompt = You MUST copy from above!
12
 
@@ -20,20 +22,22 @@ alpaca_prompt = """Below is an instruction that describes a task, paired with an
20
  ### Response:
21
  {}"""
22
 
23
- content = st.text_input('Content')
 
 
24
  inputs = tokenizer(
25
  [
26
  alpaca_prompt.format(
27
  "The following passage is content from a news report. Please summarize this passage in one sentence or less.", # instruction
28
- content, # input
29
  "", # output - leave this blank for generation!
30
  )
31
  ], return_tensors = "pt").to("cuda")
32
 
33
  outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
34
- results= tokenizer.batch_decode(outputs)
35
  out = results[0].split('\n')[-1]
36
- st.text_area(label='Headline',value=out[:len(out)-4])
37
 
38
 
39
 
 
1
  # Load model directly
2
  import streamlit as st
3
+ from unsloth import FastLanguageModel
4
+ import torch
5
+ model, tokenizer = FastLanguageModel.from_pretrained(
6
+ model_name = "shivam9980/mistral-7b-news-cnn-merged", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
7
+ max_seq_length = max_seq_length,
8
+ dtype = dtype,
9
+ load_in_4bit = load_in_4bit,
10
+ token = hf_token, # use one if using gated models like meta-llama/Llama-2-7b-hf
11
+ )
12
 
13
  # alpaca_prompt = You MUST copy from above!
14
 
 
22
  ### Response:
23
  {}"""
24
 
25
+ # alpaca_prompt = Copied from above
26
+ c = st.text_input('Enter the contents ')
27
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
28
  inputs = tokenizer(
29
  [
30
  alpaca_prompt.format(
31
  "The following passage is content from a news report. Please summarize this passage in one sentence or less.", # instruction
32
+ c,
33
  "", # output - leave this blank for generation!
34
  )
35
  ], return_tensors = "pt").to("cuda")
36
 
37
  outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
38
+ results = tokenizer.batch_decode(outputs)
39
  out = results[0].split('\n')[-1]
40
+ st.text_area(label='Headline',value=out[:])
41
 
42
 
43