|
""" CLIP tokenizer |
|
|
|
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. |
|
""" |
|
import gzip |
|
import html |
|
import os |
|
from functools import lru_cache |
|
from typing import Union, List |
|
|
|
import ftfy |
|
import regex as re |
|
import torch |
|
|
|
|
|
import os |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
@lru_cache() |
|
def default_bpe(): |
|
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") |
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a significant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8+n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
"""Return set of symbol pairs in a word. |
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
def basic_clean(text): |
|
text = ftfy.fix_text(text) |
|
text = html.unescape(html.unescape(text)) |
|
return text.strip() |
|
|
|
|
|
def whitespace_clean(text): |
|
text = re.sub(r'\s+', ' ', text) |
|
text = text.strip() |
|
return text |
|
|
|
|
|
class SimpleTokenizer(object): |
|
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') |
|
merges = merges[1:49152-256-2+1] |
|
merges = [tuple(merge.split()) for merge in merges] |
|
vocab = list(bytes_to_unicode().values()) |
|
vocab = vocab + [v+'</w>' for v in vocab] |
|
for merge in merges: |
|
vocab.append(''.join(merge)) |
|
if not special_tokens: |
|
special_tokens = ['<start_of_text>', '<end_of_text>'] |
|
else: |
|
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens |
|
vocab.extend(special_tokens) |
|
self.encoder = dict(zip(vocab, range(len(vocab)))) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.bpe_ranks = dict(zip(merges, range(len(merges)))) |
|
self.cache = {t:t for t in special_tokens} |
|
special = "|".join(special_tokens) |
|
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) |
|
|
|
self.vocab_size = len(self.encoder) |
|
self.all_special_ids = [self.encoder[t] for t in special_tokens] |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token[:-1]) + ( token[-1] + '</w>',) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token+'</w>' |
|
|
|
while True: |
|
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
new_word.extend(word[i:j]) |
|
i = j |
|
except: |
|
new_word.extend(word[i:]) |
|
break |
|
|
|
if word[i] == first and i < len(word)-1 and word[i+1] == second: |
|
new_word.append(first+second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = ' '.join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def encode(self, text): |
|
bpe_tokens = [] |
|
text = whitespace_clean(basic_clean(text)).lower() |
|
for token in re.findall(self.pat, text): |
|
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) |
|
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) |
|
return bpe_tokens |
|
|
|
def decode(self, tokens): |
|
text = ''.join([self.decoder[token] for token in tokens]) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') |
|
return text |
|
|
|
|
|
_tokenizer = SimpleTokenizer() |
|
|
|
def decode(output_ids: torch.Tensor): |
|
output_ids = output_ids.cpu().numpy() |
|
return _tokenizer.decode(output_ids) |
|
|
|
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: |
|
""" |
|
Returns the tokenized representation of given input string(s) |
|
|
|
Parameters |
|
---------- |
|
texts : Union[str, List[str]] |
|
An input string or a list of input strings to tokenize |
|
context_length : int |
|
The context length to use; all CLIP models use 77 as the context length |
|
|
|
Returns |
|
------- |
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] |
|
""" |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
sot_token = _tokenizer.encoder["<start_of_text>"] |
|
eot_token = _tokenizer.encoder["<end_of_text>"] |
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
if len(tokens) > context_length: |
|
tokens = tokens[:context_length] |
|
tokens[-1] = eot_token |
|
result[i, :len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|
|
|
|
class HFTokenizer: |
|
"""HuggingFace tokenizer wrapper""" |
|
|
|
def __init__(self, tokenizer_name: str): |
|
from transformers import AutoTokenizer |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) |
|
|
|
def save_pretrained(self, dest): |
|
self.tokenizer.save_pretrained(dest) |
|
|
|
def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor: |
|
|
|
|
|
if isinstance(texts, str): |
|
texts = [texts] |
|
texts = [whitespace_clean(basic_clean(text)) for text in texts] |
|
input_ids = self.tokenizer( |
|
texts, |
|
return_tensors='pt', |
|
max_length=context_length, |
|
padding='max_length', |
|
truncation=True, |
|
).input_ids |
|
return input_ids |
|
|