prismer / label_prettify.py
shikunl's picture
Plot only large objects
50b6c28
raw
history blame
4.94 kB
import os
import json
import random
import torch
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from prismer.utils import create_ade20k_label_colormap
obj_label_map = torch.load('prismer/dataset/detection_features.pt')['labels']
coco_label_map = torch.load('prismer/dataset/coco_features.pt')['labels']
ade_color = create_ade20k_label_colormap()
def islight(rgb):
r, g, b = rgb
hsp = np.sqrt(0.299 * (r * r) + 0.587 * (g * g) + 0.114 * (b * b))
if hsp > 127.5:
return True
else:
return False
def depth_prettify(file_path):
depth = plt.imread(file_path)
plt.imsave(file_path, depth, cmap='rainbow')
def obj_detection_prettify(rgb_path, path_name):
rgb = plt.imread(rgb_path)
obj_labels = plt.imread(path_name)
obj_labels_dict = json.load(open(path_name.replace('.png', '.json')))
plt.imshow(rgb)
if len(np.unique(obj_labels)) == 1:
plt.axis('off')
plt.savefig(path_name, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
else:
num_objs = np.unique(obj_labels)[:-1].max()
plt.imshow(obj_labels, cmap='terrain', vmax=num_objs + 1 / 255., alpha=0.8)
cmap = matplotlib.colormaps.get_cmap('terrain')
for i in np.unique(obj_labels)[:-1]:
obj_idx_all = np.where(obj_labels == i)
x, y = obj_idx_all[1].mean(), obj_idx_all[0].mean()
obj_name = obj_label_map[obj_labels_dict[str(int(i * 255))]]
obj_name = obj_name.split(',')[0]
if islight([c*255 for c in cmap(i / num_objs)[:3]]):
plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
else:
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
plt.savefig(path_name, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def seg_prettify(rgb_path, file_name):
rgb = plt.imread(rgb_path)
seg_labels = plt.imread(file_name)
plt.imshow(rgb)
seg_map = np.zeros(list(seg_labels.shape) + [3], dtype=np.int16)
for i in np.unique(seg_labels):
seg_map[seg_labels == i] = ade_color[int(i * 255)]
plt.imshow(seg_map, alpha=0.8)
for i in np.unique(seg_labels):
obj_idx_all = np.where(seg_labels == i)
if len(obj_idx_all[0]) > 20: # only plot the label with its number of labelled pixel more than 20
obj_idx = random.randint(0, len(obj_idx_all[0]) - 1)
x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
obj_name = coco_label_map[int(i * 255)]
obj_name = obj_name.split(',')[0]
if islight(seg_map[int(y), int(x)]):
plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
else:
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def ocr_detection_prettify(rgb_path, file_name):
if os.path.exists(file_name):
rgb = plt.imread(rgb_path)
ocr_labels = plt.imread(file_name)
ocr_labels_dict = torch.load(file_name.replace('.png', '.pt'))
plt.imshow(rgb)
plt.imshow(ocr_labels, cmap='gray', alpha=0.8)
for i in np.unique(ocr_labels)[:-1]:
text_idx_all = np.where(ocr_labels == i)
x, y = text_idx_all[1].mean(), text_idx_all[0].mean()
text = ocr_labels_dict[int(i * 255)]['text']
plt.text(x, y, text, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
else:
rgb = plt.imread(rgb_path)
ocr_labels = np.ones_like(rgb, dtype=np.float32())
plt.imshow(rgb)
plt.imshow(ocr_labels, cmap='gray', alpha=0.8)
x, y = rgb.shape[1] / 2, rgb.shape[0] / 2
plt.text(x, y, 'No text detected', c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
os.makedirs(os.path.dirname(file_name), exist_ok=True)
plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def label_prettify(rgb_path, expert_paths):
for expert_path in expert_paths:
if 'depth' in expert_path:
depth_prettify(expert_path)
elif 'seg' in expert_path:
seg_prettify(rgb_path, expert_path)
elif 'ocr' in expert_path:
ocr_detection_prettify(rgb_path, expert_path)
elif 'obj' in expert_path:
obj_detection_prettify(rgb_path, expert_path)