|
import streamlit as st |
|
from ultralytics import YOLO |
|
import pandas as pd |
|
import numpy as np |
|
from io import StringIO |
|
import PIL |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
|
|
|
|
st.title("cancer-detection") |
|
st.text("Upload image here:") |
|
uploaded_file = st.file_uploader("Choose a file", type=['png', 'jpg']) |
|
if uploaded_file is not None: |
|
|
|
|
|
st.write("filename:", uploaded_file.name) |
|
uploaded_image = PIL.Image.open(uploaded_file) |
|
st.image(uploaded_image, caption='Input', width=200) |
|
|
|
type_=st.selectbox("Choose any one type of detection", (('Brain'), ('Skin'))) |
|
conf = st.slider('Set confidence level percentage', 0, 100, 25) |
|
|
|
if type_=='Brain': |
|
model= YOLO("cd_detect.pt") |
|
confi=conf/100 |
|
res=model(uploaded_image, conf=confi) |
|
img=res[0].plot() |
|
a=res[0] |
|
if a.masks is not None: |
|
st.image(img, caption='Output', width=600) |
|
else: |
|
st.write("No detections found") |
|
|
|
if type_=='Skin': |
|
|
|
|
|
model= YOLO("skin_detect.pt") |
|
confi=conf/100 |
|
res=model(uploaded_image, conf=confi) |
|
img=res[0].plot() |
|
a=res[0] |
|
if a.masks is not None: |
|
st.image(img, caption='Output', width=600) |
|
else: |
|
st.write("No detections found") |