Xingqian Xu
New app first commit
2fbcf51
from abc import abstractmethod
from functools import partial
import math
from typing import Iterable
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from .diffusion_utils import \
checkpoint, conv_nd, linear, avg_pool_nd, \
zero_module, normalization, timestep_embedding
from .attention import SpatialTransformer
from lib.model_zoo.common.get_model import get_model, register
symbol = 'openai'
# dummy replace
def convert_module_to_f16(x):
pass
def convert_module_to_f32(x):
pass
## go
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class TransposedUpsample(nn.Module):
'Learned 2x upsampling without padding'
def __init__(self, channels, out_channels=None, ks=5):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
def forward(self,x):
return self.up(x)
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint
)
def _forward(self, x, emb):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
use_checkpoint=False,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x):
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
#return pt_checkpoint(self._forward, x) # pytorch
def _forward(self, x):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial ** 2) * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
@register('openai_unet')
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
#self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.") # todo: convert to warning
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if disable_self_attentions is not None:
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if num_attention_blocks is None or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if disable_self_attentions is not None:
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if num_attention_blocks is None or i < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
self.output_blocks.apply(convert_module_to_f32)
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape == (x.shape[0],)
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
class EncoderUNetModel(nn.Module):
"""
The half UNet model with attention and timestep embedding.
For usage, see UNet.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
pool="adaptive",
*args,
**kwargs
):
super().__init__()
if num_heads_upsample == -1:
num_heads_upsample = num_heads
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.pool = pool
if pool == "adaptive":
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
nn.AdaptiveAvgPool2d((1, 1)),
zero_module(conv_nd(dims, ch, out_channels, 1)),
nn.Flatten(),
)
elif pool == "attention":
assert num_head_channels != -1
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
AttentionPool2d(
(image_size // ds), ch, num_head_channels, out_channels
),
)
elif pool == "spatial":
self.out = nn.Sequential(
nn.Linear(self._feature_size, 2048),
nn.ReLU(),
nn.Linear(2048, self.out_channels),
)
elif pool == "spatial_v2":
self.out = nn.Sequential(
nn.Linear(self._feature_size, 2048),
normalization(2048),
nn.SiLU(),
nn.Linear(2048, self.out_channels),
)
else:
raise NotImplementedError(f"Unexpected {pool} pooling")
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
def forward(self, x, timesteps):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:return: an [N x K] Tensor of outputs.
"""
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
results = []
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb)
if self.pool.startswith("spatial"):
results.append(h.type(x.dtype).mean(dim=(2, 3)))
h = self.middle_block(h, emb)
if self.pool.startswith("spatial"):
results.append(h.type(x.dtype).mean(dim=(2, 3)))
h = th.cat(results, axis=-1)
return self.out(h)
else:
h = h.type(x.dtype)
return self.out(h)
#######################
# Unet with self-attn #
#######################
from .attention import SpatialTransformerNoContext
@register('openai_unet_nocontext')
class UNetModelNoContext(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
num_attention_blocks=None, ):
super().__init__()
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
#self.num_res_blocks = num_res_blocks
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.") # todo: convert to warning
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformerNoContext(
ch, num_heads, dim_head, depth=transformer_depth
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformerNoContext( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformerNoContext(
ch, num_heads, dim_head, depth=transformer_depth,
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def forward(self, x, timesteps):
assert self.num_classes is None, \
"not supported"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb)
hs.append(h)
h = self.middle_block(h, emb)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
@register('openai_unet_nocontext_noatt')
class UNetModelNoContextNoAtt(nn.Module):
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
use_scale_shift_norm=False,
resblock_updown=False,
n_embed=None,):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
#self.num_res_blocks = num_res_blocks
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def forward(self, x, timesteps):
assert self.num_classes is None, \
"not supported"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb)
hs.append(h)
h = self.middle_block(h, emb)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
@register('openai_unet_nocontext_noatt_decoderonly')
class UNetModelNoContextNoAttDecoderOnly(nn.Module):
def __init__(
self,
in_channels,
out_channels,
model_channels,
num_res_blocks,
dropout=0,
channel_mult=(4, 2, 1),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
use_scale_shift_norm=False,
resblock_updown=False,
n_embed=None,):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
#self.num_res_blocks = num_res_blocks
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
self._feature_size = model_channels
ch = model_channels * self.channel_mult[0]
self.output_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, ch, 3, padding=1)
)
]
)
for level, mult in enumerate(channel_mult):
for i in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if level != len(channel_mult)-1 and (i == self.num_res_blocks[level]-1):
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
self.output_blocks.append(TimestepEmbedSequential(*layers))
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def forward(self, x, timesteps):
assert self.num_classes is None, \
"not supported"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.output_blocks:
h = module(h, emb)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
#########################
# Double Attention Unet #
#########################
from .attention import DualSpatialTransformer
class TimestepEmbedSequentialExtended(nn.Sequential, TimestepBlock):
def forward(self, x, emb, context=None, which_attn=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
elif isinstance(layer, DualSpatialTransformer):
x = layer(x, context, which=which_attn)
else:
x = layer(x)
return x
@register('openai_unet_dual_context')
class UNetModelDualContext(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None, ):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
#self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.") # todo: convert to warning
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequentialExtended(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if disable_self_attentions is not None:
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if num_attention_blocks is None or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else DualSpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa
)
)
self.input_blocks.append(TimestepEmbedSequentialExtended(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequentialExtended(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequentialExtended(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else DualSpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if disable_self_attentions is not None:
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if num_attention_blocks is None or i < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else DualSpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequentialExtended(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def forward(self, x, timesteps=None, context=None, y=None, which_attn=None, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
t_emb = t_emb.to(context.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape == (x.shape[0],)
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context, which_attn=which_attn)
hs.append(h)
h = self.middle_block(h, emb, context, which_attn=which_attn)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context, which_attn=which_attn)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
###########
# VD Unet #
###########
from functools import partial
@register('openai_unet_2d')
class UNetModel2D(nn.Module):
def __init__(self,
input_channels,
model_channels,
output_channels,
context_dim=768,
num_noattn_blocks=(2, 2, 2, 2),
channel_mult=(1, 2, 4, 8),
with_attn=[True, True, True, False],
num_heads=8,
use_checkpoint=True, ):
super().__init__()
ResBlockPreset = partial(
ResBlock, dropout=0, dims=2, use_checkpoint=use_checkpoint,
use_scale_shift_norm=False)
self.input_channels = input_channels
self.model_channels = model_channels
self.num_noattn_blocks = num_noattn_blocks
self.channel_mult = channel_mult
self.num_heads = num_heads
##################
# Time embedding #
##################
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),)
################
# input_blocks #
################
current_channel = model_channels
input_blocks = [
TimestepEmbedSequential(
nn.Conv2d(input_channels, model_channels, 3, padding=1, bias=True))]
input_block_channels = [current_channel]
for level_idx, mult in enumerate(channel_mult):
for _ in range(self.num_noattn_blocks[level_idx]):
layers = [
ResBlockPreset(
current_channel, time_embed_dim,
out_channels = mult * model_channels,)]
current_channel = mult * model_channels
dim_head = current_channel // num_heads
if with_attn[level_idx]:
layers += [
SpatialTransformer(
current_channel, num_heads, dim_head,
depth=1, context_dim=context_dim, )]
input_blocks += [TimestepEmbedSequential(*layers)]
input_block_channels.append(current_channel)
if level_idx != len(channel_mult) - 1:
input_blocks += [
TimestepEmbedSequential(
Downsample(
current_channel, use_conv=True,
dims=2, out_channels=current_channel,))]
input_block_channels.append(current_channel)
self.input_blocks = nn.ModuleList(input_blocks)
#################
# middle_blocks #
#################
middle_block = [
ResBlockPreset(
current_channel, time_embed_dim,),
SpatialTransformer(
current_channel, num_heads, dim_head,
depth=1, context_dim=context_dim, ),
ResBlockPreset(
current_channel, time_embed_dim,),]
self.middle_block = TimestepEmbedSequential(*middle_block)
#################
# output_blocks #
#################
output_blocks = []
for level_idx, mult in list(enumerate(channel_mult))[::-1]:
for block_idx in range(self.num_noattn_blocks[level_idx] + 1):
extra_channel = input_block_channels.pop()
layers = [
ResBlockPreset(
current_channel + extra_channel,
time_embed_dim,
out_channels = model_channels * mult,) ]
current_channel = model_channels * mult
dim_head = current_channel // num_heads
if with_attn[level_idx]:
layers += [
SpatialTransformer(
current_channel, num_heads, dim_head,
depth=1, context_dim=context_dim,)]
if level_idx!=0 and block_idx==self.num_noattn_blocks[level_idx]:
layers += [
Upsample(
current_channel, use_conv=True,
dims=2, out_channels=current_channel)]
output_blocks += [TimestepEmbedSequential(*layers)]
self.output_blocks = nn.ModuleList(output_blocks)
self.out = nn.Sequential(
normalization(current_channel),
nn.SiLU(),
zero_module(nn.Conv2d(model_channels, output_channels, 3, padding=1)),)
def forward(self, x, timesteps=None, context=None):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
return self.out(h)
class FCBlock(TimestepBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_checkpoint=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_checkpoint = use_checkpoint
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
nn.Conv2d(channels, self.out_channels, 1, padding=0),)
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(emb_channels, self.out_channels,),)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 1, padding=0)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = nn.Conv2d(channels, self.out_channels, 1, padding=0)
def forward(self, x, emb):
if len(x.shape) == 2:
x = x[:, :, None, None]
elif len(x.shape) == 4:
pass
else:
raise ValueError
y = checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint)
if len(x.shape) == 2:
return y[:, :, 0, 0]
elif len(x.shape) == 4:
return y
def _forward(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
@register('openai_unet_0d')
class UNetModel0D(nn.Module):
def __init__(self,
input_channels,
model_channels,
output_channels,
context_dim=768,
num_noattn_blocks=(2, 2, 2, 2),
channel_mult=(1, 2, 4, 8),
with_attn=[True, True, True, False],
num_heads=8,
use_checkpoint=True, ):
super().__init__()
FCBlockPreset = partial(FCBlock, dropout=0, use_checkpoint=use_checkpoint)
self.input_channels = input_channels
self.model_channels = model_channels
self.num_noattn_blocks = num_noattn_blocks
self.channel_mult = channel_mult
self.num_heads = num_heads
##################
# Time embedding #
##################
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),)
################
# input_blocks #
################
current_channel = model_channels
input_blocks = [
TimestepEmbedSequential(
nn.Conv2d(input_channels, model_channels, 1, padding=0, bias=True))]
input_block_channels = [current_channel]
for level_idx, mult in enumerate(channel_mult):
for _ in range(self.num_noattn_blocks[level_idx]):
layers = [
FCBlockPreset(
current_channel, time_embed_dim,
out_channels = mult * model_channels,)]
current_channel = mult * model_channels
dim_head = current_channel // num_heads
if with_attn[level_idx]:
layers += [
SpatialTransformer(
current_channel, num_heads, dim_head,
depth=1, context_dim=context_dim, )]
input_blocks += [TimestepEmbedSequential(*layers)]
input_block_channels.append(current_channel)
if level_idx != len(channel_mult) - 1:
input_blocks += [
TimestepEmbedSequential(
Downsample(
current_channel, use_conv=True,
dims=2, out_channels=current_channel,))]
input_block_channels.append(current_channel)
self.input_blocks = nn.ModuleList(input_blocks)
#################
# middle_blocks #
#################
middle_block = [
FCBlockPreset(
current_channel, time_embed_dim,),
SpatialTransformer(
current_channel, num_heads, dim_head,
depth=1, context_dim=context_dim, ),
FCBlockPreset(
current_channel, time_embed_dim,),]
self.middle_block = TimestepEmbedSequential(*middle_block)
#################
# output_blocks #
#################
output_blocks = []
for level_idx, mult in list(enumerate(channel_mult))[::-1]:
for block_idx in range(self.num_noattn_blocks[level_idx] + 1):
extra_channel = input_block_channels.pop()
layers = [
FCBlockPreset(
current_channel + extra_channel,
time_embed_dim,
out_channels = model_channels * mult,) ]
current_channel = model_channels * mult
dim_head = current_channel // num_heads
if with_attn[level_idx]:
layers += [
SpatialTransformer(
current_channel, num_heads, dim_head,
depth=1, context_dim=context_dim,)]
if level_idx!=0 and block_idx==self.num_noattn_blocks[level_idx]:
layers += [
nn.Conv2d(current_channel, current_channel, 1, padding=0)]
output_blocks += [TimestepEmbedSequential(*layers)]
self.output_blocks = nn.ModuleList(output_blocks)
self.out = nn.Sequential(
normalization(current_channel),
nn.SiLU(),
zero_module(nn.Conv2d(model_channels, output_channels, 1, padding=0)),)
def forward(self, x, timesteps=None, context=None):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
return self.out(h)
class Linear_MultiDim(nn.Linear):
def __init__(self, in_features, out_features, *args, **kwargs):
in_features = [in_features] if isinstance(in_features, int) else list(in_features)
out_features = [out_features] if isinstance(out_features, int) else list(out_features)
self.in_features_multidim = in_features
self.out_features_multidim = out_features
super().__init__(
np.array(in_features).prod(),
np.array(out_features).prod(),
*args, **kwargs)
def forward(self, x):
shape = x.shape
n = len(shape) - len(self.in_features_multidim)
x = x.view(*shape[:n], self.in_features)
y = super().forward(x)
y = y.view(*shape[:n], *self.out_features_multidim)
return y
class FCBlock_MultiDim(FCBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_checkpoint=False,):
channels = [channels] if isinstance(channels, int) else list(channels)
channels_all = np.array(channels).prod()
self.channels_multidim = channels
if out_channels is not None:
out_channels = [out_channels] if isinstance(out_channels, int) else list(out_channels)
out_channels_all = np.array(out_channels).prod()
self.out_channels_multidim = out_channels
else:
out_channels_all = channels_all
self.out_channels_multidim = self.channels_multidim
self.channels = channels
super().__init__(
channels = channels_all,
emb_channels = emb_channels,
dropout = dropout,
out_channels = out_channels_all,
use_checkpoint = use_checkpoint,)
def forward(self, x, emb):
shape = x.shape
n = len(self.channels_multidim)
x = x.view(*shape[0:-n], self.channels, 1, 1)
x = x.view(-1, self.channels, 1, 1)
y = checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint)
y = y.view(*shape[0:-n], -1)
y = y.view(*shape[0:-n], *self.out_channels_multidim)
return y
@register('openai_unet_0dmd')
class UNetModel0D_MultiDim(nn.Module):
def __init__(self,
input_channels,
model_channels,
output_channels,
context_dim=768,
num_noattn_blocks=(2, 2, 2, 2),
channel_mult=(1, 2, 4, 8),
second_dim=(4, 4, 4, 4),
with_attn=[True, True, True, False],
num_heads=8,
use_checkpoint=True, ):
super().__init__()
FCBlockPreset = partial(FCBlock_MultiDim, dropout=0, use_checkpoint=use_checkpoint)
self.input_channels = input_channels
self.model_channels = model_channels
self.num_noattn_blocks = num_noattn_blocks
self.channel_mult = channel_mult
self.second_dim = second_dim
self.num_heads = num_heads
##################
# Time embedding #
##################
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),)
################
# input_blocks #
################
sdim = second_dim[0]
current_channel = [model_channels, sdim, 1]
input_blocks = [
TimestepEmbedSequential(
Linear_MultiDim([input_channels, 1, 1], current_channel, bias=True))]
input_block_channels = [current_channel]
for level_idx, (mult, sdim) in enumerate(zip(channel_mult, second_dim)):
for _ in range(self.num_noattn_blocks[level_idx]):
layers = [
FCBlockPreset(
current_channel,
time_embed_dim,
out_channels = [mult*model_channels, sdim, 1],)]
current_channel = [mult*model_channels, sdim, 1]
dim_head = current_channel[0] // num_heads
if with_attn[level_idx]:
layers += [
SpatialTransformer(
current_channel[0], num_heads, dim_head,
depth=1, context_dim=context_dim, )]
input_blocks += [TimestepEmbedSequential(*layers)]
input_block_channels.append(current_channel)
if level_idx != len(channel_mult) - 1:
input_blocks += [
TimestepEmbedSequential(
Linear_MultiDim(current_channel, current_channel, bias=True, ))]
input_block_channels.append(current_channel)
self.input_blocks = nn.ModuleList(input_blocks)
#################
# middle_blocks #
#################
middle_block = [
FCBlockPreset(
current_channel, time_embed_dim, ),
SpatialTransformer(
current_channel[0], num_heads, dim_head,
depth=1, context_dim=context_dim, ),
FCBlockPreset(
current_channel, time_embed_dim, ),]
self.middle_block = TimestepEmbedSequential(*middle_block)
#################
# output_blocks #
#################
output_blocks = []
for level_idx, (mult, sdim) in list(enumerate(zip(channel_mult, second_dim)))[::-1]:
for block_idx in range(self.num_noattn_blocks[level_idx] + 1):
extra_channel = input_block_channels.pop()
layers = [
FCBlockPreset(
[current_channel[0] + extra_channel[0]] + current_channel[1:],
time_embed_dim,
out_channels = [mult*model_channels, sdim, 1], )]
current_channel = [mult*model_channels, sdim, 1]
dim_head = current_channel[0] // num_heads
if with_attn[level_idx]:
layers += [
SpatialTransformer(
current_channel[0], num_heads, dim_head,
depth=1, context_dim=context_dim,)]
if level_idx!=0 and block_idx==self.num_noattn_blocks[level_idx]:
layers += [
Linear_MultiDim(current_channel, current_channel, bias=True, )]
output_blocks += [TimestepEmbedSequential(*layers)]
self.output_blocks = nn.ModuleList(output_blocks)
self.out = nn.Sequential(
normalization(current_channel[0]),
nn.SiLU(),
zero_module(Linear_MultiDim(current_channel, [output_channels, 1, 1], bias=True, )),)
def forward(self, x, timesteps=None, context=None):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
return self.out(h)
@register('openai_unet_vd')
class UNetModelVD(nn.Module):
def __init__(self,
unet_image_cfg,
unet_text_cfg, ):
super().__init__()
self.unet_image = get_model()(unet_image_cfg)
self.unet_text = get_model()(unet_text_cfg)
self.time_embed = self.unet_image.time_embed
del self.unet_image.time_embed
del self.unet_text.time_embed
self.model_channels = self.unet_image.model_channels
def forward(self, x, timesteps, context, xtype='image', ctype='prompt'):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb.to(x.dtype))
if xtype == 'text':
x = x[:, :, None, None]
h = x
for i_module, t_module in zip(self.unet_image.input_blocks, self.unet_text.input_blocks):
h = self.mixed_run(i_module, t_module, h, emb, context, xtype, ctype)
hs.append(h)
h = self.mixed_run(
self.unet_image.middle_block, self.unet_text.middle_block,
h, emb, context, xtype, ctype)
for i_module, t_module in zip(self.unet_image.output_blocks, self.unet_text.output_blocks):
h = th.cat([h, hs.pop()], dim=1)
h = self.mixed_run(i_module, t_module, h, emb, context, xtype, ctype)
if xtype == 'image':
return self.unet_image.out(h)
elif xtype == 'text':
return self.unet_text.out(h).squeeze(-1).squeeze(-1)
def mixed_run(self, inet, tnet, x, emb, context, xtype, ctype):
h = x
for ilayer, tlayer in zip(inet, tnet):
if isinstance(ilayer, TimestepBlock) and xtype=='image':
h = ilayer(h, emb)
elif isinstance(tlayer, TimestepBlock) and xtype=='text':
h = tlayer(h, emb)
elif isinstance(ilayer, SpatialTransformer) and ctype=='vision':
h = ilayer(h, context)
elif isinstance(ilayer, SpatialTransformer) and ctype=='prompt':
h = tlayer(h, context)
elif xtype=='image':
h = ilayer(h)
elif xtype == 'text':
h = tlayer(h)
else:
raise ValueError
return h
def forward_dc(self, x, timesteps, c0, c1, xtype, c0_type, c1_type, mixed_ratio):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb.to(x.dtype))
if xtype == 'text':
x = x[:, :, None, None]
h = x
for i_module, t_module in zip(self.unet_image.input_blocks, self.unet_text.input_blocks):
h = self.mixed_run_dc(i_module, t_module, h, emb, c0, c1, xtype, c0_type, c1_type, mixed_ratio)
hs.append(h)
h = self.mixed_run_dc(
self.unet_image.middle_block, self.unet_text.middle_block,
h, emb, c0, c1, xtype, c0_type, c1_type, mixed_ratio)
for i_module, t_module in zip(self.unet_image.output_blocks, self.unet_text.output_blocks):
h = th.cat([h, hs.pop()], dim=1)
h = self.mixed_run_dc(i_module, t_module, h, emb, c0, c1, xtype, c0_type, c1_type, mixed_ratio)
if xtype == 'image':
return self.unet_image.out(h)
elif xtype == 'text':
return self.unet_text.out(h).squeeze(-1).squeeze(-1)
def mixed_run_dc(self, inet, tnet, x, emb, c0, c1, xtype, c0_type, c1_type, mixed_ratio):
h = x
for ilayer, tlayer in zip(inet, tnet):
if isinstance(ilayer, TimestepBlock) and xtype=='image':
h = ilayer(h, emb)
elif isinstance(tlayer, TimestepBlock) and xtype=='text':
h = tlayer(h, emb)
elif isinstance(ilayer, SpatialTransformer):
h0 = ilayer(h, c0)-h if c0_type=='vision' else tlayer(h, c0)-h
h1 = ilayer(h, c1)-h if c1_type=='vision' else tlayer(h, c1)-h
h = h0*mixed_ratio + h1*(1-mixed_ratio) + h
# h = ilayer(h, c0)
elif xtype=='image':
h = ilayer(h)
elif xtype == 'text':
h = tlayer(h)
else:
raise ValueError
return h
################
# VD Next Unet #
################
from functools import partial
import copy
@register('openai_unet_2d_next')
class UNetModel2D_Next(nn.Module):
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
context_dim,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
use_checkpoint=False,
num_heads=8,
num_head_channels=None,
parts = ['global', 'data', 'context']):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.context_dim = context_dim
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.num_heads = num_heads
self.num_head_channels = num_head_channels
assert (num_heads is None) + (num_head_channels is None) == 1, \
"One of num_heads or num_head_channels need to be set"
self.parts = parts if isinstance(parts, list) else [parts]
self.glayer_included = 'global' in self.parts
self.dlayer_included = 'data' in self.parts
self.clayer_included = 'context' in self.parts
self.layer_sequence_ordering = []
#################
# global layers #
#################
time_embed_dim = model_channels * 4
if self.glayer_included:
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
################
# input layers #
################
if self.dlayer_included:
self.data_blocks = nn.ModuleList([])
ResBlockDefault = partial(
ResBlock,
emb_channels=time_embed_dim,
dropout=dropout,
dims=2,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=False, )
else:
def dummy(*args, **kwargs):
return None
ResBlockDefault = dummy
if self.clayer_included:
self.context_blocks = nn.ModuleList([])
CrossAttnDefault = partial(
SpatialTransformer,
context_dim=context_dim,
disable_self_attn=False, )
else:
def dummy(*args, **kwargs):
return None
CrossAttnDefault = dummy
self.add_data_layer(conv_nd(2, in_channels, model_channels, 3, padding=1))
self.layer_sequence_ordering.append('save_hidden_feature')
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(self.num_res_blocks[level]):
layer = ResBlockDefault(
channels=ch, out_channels=mult*model_channels,)
self.add_data_layer(layer)
ch = mult * model_channels
if (ds in attention_resolutions):
d_head, n_heads = self.get_d_head_n_heads(ch)
layer = CrossAttnDefault(
in_channels=ch, d_head=d_head, n_heads=n_heads,)
self.add_context_layer(layer)
input_block_chans.append(ch)
self.layer_sequence_ordering.append('save_hidden_feature')
if level != len(channel_mult) - 1:
layer = Downsample(
ch, use_conv=True, dims=2, out_channels=ch)
self.add_data_layer(layer)
input_block_chans.append(ch)
self.layer_sequence_ordering.append('save_hidden_feature')
ds *= 2
self.i_order = copy.deepcopy(self.layer_sequence_ordering)
self.layer_sequence_ordering = []
#################
# middle layers #
#################
self.add_data_layer(ResBlockDefault(channels=ch))
d_head, n_heads = self.get_d_head_n_heads(ch)
self.add_context_layer(CrossAttnDefault(in_channels=ch, d_head=d_head, n_heads=n_heads))
self.add_data_layer(ResBlockDefault(channels=ch))
self.m_order = copy.deepcopy(self.layer_sequence_ordering)
self.layer_sequence_ordering = []
#################
# output layers #
#################
for level, mult in list(enumerate(channel_mult))[::-1]:
for _ in range(self.num_res_blocks[level] + 1):
self.layer_sequence_ordering.append('load_hidden_feature')
ich = input_block_chans.pop()
layer = ResBlockDefault(
channels=ch+ich, out_channels=model_channels*mult,)
ch = model_channels * mult
self.add_data_layer(layer)
if ds in attention_resolutions:
d_head, n_heads = self.get_d_head_n_heads(ch)
layer = CrossAttnDefault(
in_channels=ch, d_head=d_head, n_heads=n_heads)
self.add_context_layer(layer)
if level != 0:
layer = Upsample(ch, conv_resample, dims=2, out_channels=ch)
self.add_data_layer(layer)
ds //= 2
layer = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(2, model_channels, out_channels, 3, padding=1)),
)
self.add_data_layer(layer)
self.o_order = copy.deepcopy(self.layer_sequence_ordering)
self.layer_order = copy.deepcopy(self.i_order + self.m_order + self.o_order)
del self.layer_sequence_ordering
self.parameter_group = {}
if self.glayer_included:
self.parameter_group['global'] = self.time_embed
if self.dlayer_included:
self.parameter_group['data'] = self.data_blocks
if self.clayer_included:
self.parameter_group['context'] = self.context_blocks
def get_d_head_n_heads(self, ch):
if self.num_head_channels is None:
d_head = ch // self.num_heads
n_heads = self.num_heads
else:
d_head = self.num_head_channels
n_heads = ch // self.num_head_channels
return d_head, n_heads
def add_data_layer(self, layer):
if self.dlayer_included:
if not isinstance(layer, (list, tuple)):
layer = [layer]
self.data_blocks.append(TimestepEmbedSequential(*layer))
self.layer_sequence_ordering.append('d')
def add_context_layer(self, layer):
if self.clayer_included:
if not isinstance(layer, (list, tuple)):
layer = [layer]
self.context_blocks.append(TimestepEmbedSequential(*layer))
self.layer_sequence_ordering.append('c')
def forward(self, x, timesteps, context):
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
d_iter = iter(self.data_blocks)
c_iter = iter(self.context_blocks)
h = x
for ltype in self.i_order:
if ltype == 'd':
module = next(d_iter)
h = module(h, emb, context)
elif ltype == 'c':
module = next(c_iter)
h = module(h, emb, context)
elif ltype == 'save_hidden_feature':
hs.append(h)
for ltype in self.m_order:
if ltype == 'd':
module = next(d_iter)
h = module(h, emb, context)
elif ltype == 'c':
module = next(c_iter)
h = module(h, emb, context)
for ltype in self.i_order:
if ltype == 'load_hidden_feature':
h = th.cat([h, hs.pop()], dim=1)
elif ltype == 'd':
module = next(d_iter)
h = module(h, emb, context)
elif ltype == 'c':
module = next(c_iter)
h = module(h, emb, context)
o = h
return o
@register('openai_unet_0d_next')
class UNetModel0D_Next(UNetModel2D_Next):
def __init__(
self,
input_channels,
model_channels,
output_channels,
context_dim = 788,
num_noattn_blocks=(2, 2, 2, 2),
channel_mult=(1, 2, 4, 8),
second_dim=(4, 4, 4, 4),
with_attn=[True, True, True, False],
num_heads=8,
num_head_channels=None,
use_checkpoint=False,
parts = ['global', 'data', 'context']):
super(UNetModel2D_Next, self).__init__()
self.input_channels = input_channels
self.model_channels = model_channels
self.output_channels = output_channels
self.num_noattn_blocks = num_noattn_blocks
self.channel_mult = channel_mult
self.second_dim = second_dim
self.with_attn = with_attn
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.parts = parts if isinstance(parts, list) else [parts]
self.glayer_included = 'global' in self.parts
self.dlayer_included = 'data' in self.parts
self.clayer_included = 'context' in self.parts
self.layer_sequence_ordering = []
#################
# global layers #
#################
time_embed_dim = model_channels * 4
if self.glayer_included:
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
################
# input layers #
################
if self.dlayer_included:
self.data_blocks = nn.ModuleList([])
FCBlockDefault = partial(
FCBlock_MultiDim, dropout=0, use_checkpoint=use_checkpoint)
else:
def dummy(*args, **kwargs):
return None
FCBlockDefault = dummy
if self.clayer_included:
self.context_blocks = nn.ModuleList([])
CrossAttnDefault = partial(
SpatialTransformer,
context_dim=context_dim,
disable_self_attn=False, )
else:
def dummy(*args, **kwargs):
return None
CrossAttnDefault = dummy
sdim = second_dim[0]
current_channel = [model_channels, sdim, 1]
one_layer = Linear_MultiDim([input_channels], current_channel, bias=True)
self.add_data_layer(one_layer)
self.layer_sequence_ordering.append('save_hidden_feature')
input_block_channels = [current_channel]
for level_idx, (mult, sdim) in enumerate(zip(channel_mult, second_dim)):
for _ in range(self.num_noattn_blocks[level_idx]):
layer = FCBlockDefault(
current_channel,
time_embed_dim,
out_channels = [mult*model_channels, sdim, 1],)
self.add_data_layer(layer)
current_channel = [mult*model_channels, sdim, 1]
if with_attn[level_idx]:
d_head, n_heads = self.get_d_head_n_heads(current_channel[0])
layer = CrossAttnDefault(
in_channels=current_channel[0],
d_head=d_head, n_heads=n_heads,)
self.add_context_layer(layer)
input_block_channels.append(current_channel)
self.layer_sequence_ordering.append('save_hidden_feature')
if level_idx != len(channel_mult) - 1:
layer = Linear_MultiDim(current_channel, current_channel, bias=True,)
self.add_data_layer(layer)
input_block_channels.append(current_channel)
self.layer_sequence_ordering.append('save_hidden_feature')
self.i_order = copy.deepcopy(self.layer_sequence_ordering)
self.layer_sequence_ordering = []
#################
# middle layers #
#################
self.add_data_layer(FCBlockDefault(current_channel, time_embed_dim, ))
d_head, n_heads = self.get_d_head_n_heads(current_channel[0])
self.add_context_layer(CrossAttnDefault(in_channels=current_channel[0], d_head=d_head, n_heads=n_heads))
self.add_data_layer(FCBlockDefault(current_channel, time_embed_dim, ))
self.m_order = copy.deepcopy(self.layer_sequence_ordering)
self.layer_sequence_ordering = []
#################
# output layers #
#################
for level_idx, (mult, sdim) in list(enumerate(zip(channel_mult, second_dim)))[::-1]:
for _ in range(self.num_noattn_blocks[level_idx] + 1):
self.layer_sequence_ordering.append('load_hidden_feature')
extra_channel = input_block_channels.pop()
layer = FCBlockDefault(
[current_channel[0] + extra_channel[0]] + current_channel[1:],
time_embed_dim,
out_channels = [mult*model_channels, sdim, 1], )
self.add_data_layer(layer)
current_channel = [mult*model_channels, sdim, 1]
if with_attn[level_idx]:
d_head, n_heads = self.get_d_head_n_heads(current_channel[0])
layer = CrossAttnDefault(
in_channels=current_channel[0], d_head=d_head, n_heads=n_heads)
self.add_context_layer(layer)
if level_idx != 0:
layer = Linear_MultiDim(current_channel, current_channel, bias=True, )
self.add_data_layer(layer)
layer = nn.Sequential(
normalization(current_channel[0]),
nn.SiLU(),
zero_module(Linear_MultiDim(current_channel, [output_channels], bias=True, )),
)
self.add_data_layer(layer)
self.o_order = copy.deepcopy(self.layer_sequence_ordering)
self.layer_order = copy.deepcopy(self.i_order + self.m_order + self.o_order)
del self.layer_sequence_ordering
self.parameter_group = {}
if self.glayer_included:
self.parameter_group['global'] = self.time_embed
if self.dlayer_included:
self.parameter_group['data'] = self.data_blocks
if self.clayer_included:
self.parameter_group['context'] = self.context_blocks