Spaces:
Runtime error
Runtime error
# based on https://github.com/isl-org/MiDaS | |
import cv2 | |
import torch | |
import torch.nn as nn | |
import os | |
models_path = 'pretrained/controlnet/preprocess' | |
from torchvision.transforms import Compose | |
from .midas.dpt_depth import DPTDepthModel | |
from .midas.midas_net import MidasNet | |
from .midas.midas_net_custom import MidasNet_small | |
from .midas.transforms import Resize, NormalizeImage, PrepareForNet | |
base_model_path = os.path.join(models_path, "midas") | |
old_modeldir = os.path.dirname(os.path.realpath(__file__)) | |
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" | |
ISL_PATHS = { | |
"dpt_large": os.path.join(base_model_path, "dpt_large-midas-2f21e586.pt"), | |
"dpt_hybrid": os.path.join(base_model_path, "dpt_hybrid-midas-501f0c75.pt"), | |
"midas_v21": "", | |
"midas_v21_small": "", | |
} | |
OLD_ISL_PATHS = { | |
"dpt_large": os.path.join(old_modeldir, "dpt_large-midas-2f21e586.pt"), | |
"dpt_hybrid": os.path.join(old_modeldir, "dpt_hybrid-midas-501f0c75.pt"), | |
"midas_v21": "", | |
"midas_v21_small": "", | |
} | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
def load_midas_transform(model_type): | |
# https://github.com/isl-org/MiDaS/blob/master/run.py | |
# load transform only | |
if model_type == "dpt_large": # DPT-Large | |
net_w, net_h = 384, 384 | |
resize_mode = "minimal" | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
elif model_type == "dpt_hybrid": # DPT-Hybrid | |
net_w, net_h = 384, 384 | |
resize_mode = "minimal" | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
elif model_type == "midas_v21": | |
net_w, net_h = 384, 384 | |
resize_mode = "upper_bound" | |
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
elif model_type == "midas_v21_small": | |
net_w, net_h = 256, 256 | |
resize_mode = "upper_bound" | |
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
else: | |
assert False, f"model_type '{model_type}' not implemented, use: --model_type large" | |
transform = Compose( | |
[ | |
Resize( | |
net_w, | |
net_h, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method=resize_mode, | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
normalization, | |
PrepareForNet(), | |
] | |
) | |
return transform | |
def load_file_from_url(url, model_dir=None, progress=True, file_name=None): | |
"""Load file form http url, will download models if necessary. | |
Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py | |
Args: | |
url (str): URL to be downloaded. | |
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir. | |
Default: None. | |
progress (bool): Whether to show the download progress. Default: True. | |
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None. | |
Returns: | |
str: The path to the downloaded file. | |
""" | |
from torch.hub import download_url_to_file, get_dir | |
from urllib.parse import urlparse | |
if model_dir is None: # use the pytorch hub_dir | |
hub_dir = get_dir() | |
model_dir = os.path.join(hub_dir, 'checkpoints') | |
os.makedirs(model_dir, exist_ok=True) | |
parts = urlparse(url) | |
filename = os.path.basename(parts.path) | |
if file_name is not None: | |
filename = file_name | |
cached_file = os.path.abspath(os.path.join(model_dir, filename)) | |
if not os.path.exists(cached_file): | |
print(f'Downloading: "{url}" to {cached_file}\n') | |
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) | |
return cached_file | |
def load_model(model_type): | |
# https://github.com/isl-org/MiDaS/blob/master/run.py | |
# load network | |
model_path = ISL_PATHS[model_type] | |
old_model_path = OLD_ISL_PATHS[model_type] | |
if model_type == "dpt_large": # DPT-Large | |
model = DPTDepthModel( | |
path=model_path, | |
backbone="vitl16_384", | |
non_negative=True, | |
) | |
net_w, net_h = 384, 384 | |
resize_mode = "minimal" | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
elif model_type == "dpt_hybrid": # DPT-Hybrid | |
if os.path.exists(old_model_path): | |
model_path = old_model_path | |
elif not os.path.exists(model_path): | |
load_file_from_url(remote_model_path, model_dir=base_model_path) | |
model = DPTDepthModel( | |
path=model_path, | |
backbone="vitb_rn50_384", | |
non_negative=True, | |
) | |
net_w, net_h = 384, 384 | |
resize_mode = "minimal" | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
elif model_type == "midas_v21": | |
model = MidasNet(model_path, non_negative=True) | |
net_w, net_h = 384, 384 | |
resize_mode = "upper_bound" | |
normalization = NormalizeImage( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
elif model_type == "midas_v21_small": | |
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, | |
non_negative=True, blocks={'expand': True}) | |
net_w, net_h = 256, 256 | |
resize_mode = "upper_bound" | |
normalization = NormalizeImage( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
else: | |
print(f"model_type '{model_type}' not implemented, use: --model_type large") | |
assert False | |
transform = Compose( | |
[ | |
Resize( | |
net_w, | |
net_h, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method=resize_mode, | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
normalization, | |
PrepareForNet(), | |
] | |
) | |
return model.eval(), transform | |
class MiDaSInference(nn.Module): | |
MODEL_TYPES_TORCH_HUB = [ | |
"DPT_Large", | |
"DPT_Hybrid", | |
"MiDaS_small" | |
] | |
MODEL_TYPES_ISL = [ | |
"dpt_large", | |
"dpt_hybrid", | |
"midas_v21", | |
"midas_v21_small", | |
] | |
def __init__(self, model_type): | |
super().__init__() | |
assert (model_type in self.MODEL_TYPES_ISL) | |
model, _ = load_model(model_type) | |
self.model = model | |
self.model.train = disabled_train | |
def forward(self, x): | |
with torch.no_grad(): | |
prediction = self.model(x) | |
return prediction | |