Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------------ | |
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py | |
# Modified by Jitesh Jain (https://github.com/praeclarumjj3) | |
# ------------------------------------------------------------------------------ | |
""" | |
OneFormer criterion. | |
""" | |
import logging | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from detectron2.utils.comm import get_world_size | |
from detectron2.projects.point_rend.point_features import ( | |
get_uncertain_point_coords_with_randomness, | |
point_sample, | |
) | |
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list | |
from ..utils import box_ops | |
import torch.distributed as dist | |
import diffdist.functional as diff_dist | |
import numpy as np | |
def dist_collect(x): | |
""" collect all tensor from all GPUs | |
args: | |
x: shape (mini_batch, ...) | |
returns: | |
shape (mini_batch * num_gpu, ...) | |
""" | |
x = x.contiguous() | |
out_list = [torch.zeros_like(x, device=x.device, dtype=x.dtype).contiguous() for _ in range(dist.get_world_size())] | |
out_list = diff_dist.all_gather(out_list, x) | |
return torch.cat(out_list, dim=0).contiguous() | |
def dice_loss( | |
inputs: torch.Tensor, | |
targets: torch.Tensor, | |
num_masks: float, | |
): | |
""" | |
Compute the DICE loss, similar to generalized IOU for masks | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs | |
(0 for the negative class and 1 for the positive class). | |
""" | |
inputs = inputs.sigmoid() | |
inputs = inputs.flatten(1) | |
numerator = 2 * (inputs * targets).sum(-1) | |
denominator = inputs.sum(-1) + targets.sum(-1) | |
loss = 1 - (numerator + 1) / (denominator + 1) | |
return loss.sum() / num_masks | |
dice_loss_jit = torch.jit.script( | |
dice_loss | |
) # type: torch.jit.ScriptModule | |
def sigmoid_ce_loss( | |
inputs: torch.Tensor, | |
targets: torch.Tensor, | |
num_masks: float, | |
): | |
""" | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs | |
(0 for the negative class and 1 for the positive class). | |
Returns: | |
Loss tensor | |
""" | |
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") | |
loss = loss.mean(1) | |
return loss.sum() / num_masks | |
sigmoid_ce_loss_jit = torch.jit.script( | |
sigmoid_ce_loss | |
) # type: torch.jit.ScriptModule | |
def calculate_uncertainty(logits): | |
""" | |
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the | |
foreground class in `classes`. | |
Args: | |
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or | |
class-agnostic, where R is the total number of predicted masks in all images and C is | |
the number of foreground classes. The values are logits. | |
Returns: | |
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with | |
the most uncertain locations having the highest uncertainty score. | |
""" | |
assert logits.shape[1] == 1 | |
gt_class_logits = logits.clone() | |
return -(torch.abs(gt_class_logits)) | |
class SetCriterion(nn.Module): | |
"""This class computes the loss for DETR. | |
The process happens in two steps: | |
1) we compute hungarian assignment between ground truth boxes and the outputs of the model | |
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) | |
""" | |
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, | |
num_points, oversample_ratio, importance_sample_ratio, contrast_temperature=None): | |
"""Create the criterion. | |
Parameters: | |
num_classes: number of object categories, omitting the special no-object category | |
matcher: module able to compute a matching between targets and proposals | |
weight_dict: dict containing as key the names of the losses and as values their relative weight. | |
eos_coef: relative classification weight applied to the no-object category | |
losses: list of all the losses to be applied. See get_loss for list of available losses. | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.matcher = matcher | |
self.weight_dict = weight_dict | |
self.eos_coef = eos_coef | |
self.losses = losses | |
empty_weight = torch.ones(self.num_classes + 1) | |
empty_weight[-1] = self.eos_coef | |
self.register_buffer("empty_weight", empty_weight) | |
self.cross_entropy = nn.CrossEntropyLoss() | |
# pointwise mask loss parameters | |
self.num_points = num_points | |
self.oversample_ratio = oversample_ratio | |
self.importance_sample_ratio = importance_sample_ratio | |
self.contrast_temperature = contrast_temperature | |
if self.contrast_temperature is not None: | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / contrast_temperature)) | |
def loss_contrastive(self, outputs, targets, indices, num_masks): | |
assert "contrastive_logits" in outputs | |
assert "texts" in outputs | |
image_x = outputs["contrastive_logits"].float() | |
batch_size = image_x.shape[0] | |
# get label globally | |
labels = torch.arange(batch_size, dtype=torch.long, device=image_x.device) + batch_size * dist.get_rank() | |
text_x = outputs["texts"] | |
# [B, C] | |
image_x = F.normalize(image_x.flatten(1), dim=-1) | |
text_x = F.normalize(text_x.flatten(1), dim=-1) | |
logits_per_img = image_x @ dist_collect(text_x).t() | |
logits_per_text = text_x @ dist_collect(image_x).t() | |
logit_scale = torch.clamp(self.logit_scale.exp(), max=100) | |
loss_img = self.cross_entropy(logits_per_img * logit_scale, labels) | |
loss_text = self.cross_entropy(logits_per_text * logit_scale, labels) | |
loss_contrastive = loss_img + loss_text | |
losses = {"loss_contrastive": loss_contrastive} | |
return losses | |
def loss_labels(self, outputs, targets, indices, num_masks): | |
"""Classification loss (NLL) | |
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] | |
""" | |
assert "pred_logits" in outputs | |
src_logits = outputs["pred_logits"].float() | |
idx = self._get_src_permutation_idx(indices) | |
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) | |
target_classes = torch.full( | |
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device | |
) | |
target_classes[idx] = target_classes_o | |
ce_weight = torch.full( | |
src_logits.shape[:2], self.eos_coef, dtype=torch.float32, device=src_logits.device | |
) | |
ce_weight[idx] = torch.tensor(1.).to(target_classes.device) | |
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduce=False, reduction="none") | |
loss_ce = loss_ce.sum(1) / ce_weight.sum() | |
loss_ce = loss_ce.sum() | |
losses = {"loss_ce": loss_ce} | |
return losses | |
def loss_masks(self, outputs, targets, indices, num_masks): | |
"""Compute the losses related to the masks: the focal loss and the dice loss. | |
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] | |
""" | |
assert "pred_masks" in outputs | |
src_idx = self._get_src_permutation_idx(indices) | |
tgt_idx = self._get_tgt_permutation_idx(indices) | |
src_masks = outputs["pred_masks"] | |
src_masks = src_masks[src_idx] | |
masks = [t["masks"] for t in targets] | |
# TODO use valid to mask invalid areas due to padding in loss | |
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() | |
target_masks = target_masks.to(src_masks) | |
target_masks = target_masks[tgt_idx] | |
# No need to upsample predictions as we are using normalized coordinates :) | |
# N x 1 x H x W | |
src_masks = src_masks[:, None] | |
target_masks = target_masks[:, None] | |
with torch.no_grad(): | |
# sample point_coords | |
point_coords = get_uncertain_point_coords_with_randomness( | |
src_masks, | |
lambda logits: calculate_uncertainty(logits), | |
self.num_points, | |
self.oversample_ratio, | |
self.importance_sample_ratio, | |
) | |
# get gt labels | |
point_labels = point_sample( | |
target_masks, | |
point_coords, | |
align_corners=False, | |
).squeeze(1) | |
point_logits = point_sample( | |
src_masks, | |
point_coords, | |
align_corners=False, | |
).squeeze(1) | |
losses = { | |
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks), | |
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks), | |
} | |
del src_masks | |
del target_masks | |
return losses | |
def _get_src_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) | |
src_idx = torch.cat([src for (src, _) in indices]) | |
return batch_idx, src_idx | |
def _get_tgt_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) | |
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) | |
return batch_idx, tgt_idx | |
def get_loss(self, loss, outputs, targets, indices, num_masks): | |
loss_map = { | |
'labels': self.loss_labels, | |
'masks': self.loss_masks, | |
'contrastive': self.loss_contrastive, | |
} | |
assert loss in loss_map, f"do you really want to compute {loss} loss?" | |
return loss_map[loss](outputs, targets, indices, num_masks) | |
def forward(self, outputs, targets): | |
"""This performs the loss computation. | |
Parameters: | |
outputs: dict of tensors, see the output specification of the model for the format | |
targets: list of dicts, such that len(targets) == batch_size. | |
The expected keys in each dict depends on the losses applied, see each loss' doc | |
""" | |
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} | |
# Retrieve the matching between the outputs of the last layer and the targets | |
indices = self.matcher(outputs_without_aux, targets) | |
# Compute the average number of target boxes accross all nodes, for normalization purposes | |
num_masks = sum(len(t["labels"]) for t in targets) | |
num_masks = torch.as_tensor( | |
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device | |
) | |
if is_dist_avail_and_initialized(): | |
torch.distributed.all_reduce(num_masks) | |
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks)) | |
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer. | |
if "aux_outputs" in outputs: | |
for i, aux_outputs in enumerate(outputs["aux_outputs"]): | |
indices = self.matcher(aux_outputs, targets) | |
for loss in self.losses: | |
if loss == "contrastive": | |
continue | |
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks) | |
l_dict = {k + f"_{i}": v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
return losses | |
def __repr__(self): | |
head = "Criterion " + self.__class__.__name__ | |
body = [ | |
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)), | |
"losses: {}".format(self.losses), | |
"weight_dict: {}".format(self.weight_dict), | |
"num_classes: {}".format(self.num_classes), | |
"eos_coef: {}".format(self.eos_coef), | |
"num_points: {}".format(self.num_points), | |
"oversample_ratio: {}".format(self.oversample_ratio), | |
"importance_sample_ratio: {}".format(self.importance_sample_ratio), | |
] | |
_repr_indent = 4 | |
lines = [head] + [" " * _repr_indent + line for line in body] | |
return "\n".join(lines) |