OLA-VLM / ola_vlm /model /language_model /base_probe_vlm.py
praeclarumjj3's picture
:zap: add code
9fa3d89
raw
history blame
20.3 kB
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers.generation.utils import GenerateOutput
from ola_vlm.model.aux_heads import GenHead, DepthHead, DAv2_Head
from ola_vlm.model.aux_heads.depth_anything_v2.dpt import DepthAnythingV2
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead, OneFormerSegHead
from transformers import OneFormerProcessor
from diffusers import (
DPMSolverMultistepScheduler,
StableUnCLIPImg2ImgPipeline,
)
import torch.distributed as dist
try:
import wandb
except:
pass
import os
import matplotlib
from .base_lm import BaseCausalLM
from tqdm import tqdm
from ola_vlm.ola_utils import *
class BaseProbe_VLM(BaseCausalLM):
def __init__(self, config):
super(BaseCausalLM, self).__init__(config)
self.steps = 0
self.config = config
self.num_layers = config.num_hidden_layers
# Initialize weights and apply final processing
self.post_init()
self.is_trained = False
if hasattr(config, "probe_mode"):
self.is_trained = True
self.init_heads(config)
try:
if dist.get_rank() == 0:
wandb.init(project=os.environ['WANDB_PROJECT'], name=f"{os.environ['WANDB_NAME']}")
except:
pass
def get_model(self):
return self.model
def init_heads(self, config):
self.mode = config.probe_mode
if self.mode == "gen":
self.image_gen_heads = nn.ModuleList([
GenHead(config.image_gen, llm_hidden_size=config.hidden_size)
for _ in range(self.num_layers)
])
if not self.is_trained:
self.pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(config.image_generator, torch_dtype=torch.float16, variant="fp16")
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
self.gen_encoder = self.pipe.image_encoder
self.feature_extractor = self.pipe.feature_extractor
for p in self.gen_encoder.parameters():
p.requires_grad = False
elif self.mode == "seg":
if not self.is_trained:
self.oneformer_processor = OneFormerProcessor.from_pretrained(config.image_segmentor)
self.oneformer = OneFormerHead.from_pretrained(config.image_segmentor)
for p in self.oneformer.parameters():
p.requires_grad = False
try:
self.oneformer = self.oneformer.to("cuda")
except:
pass
self.image_seg_heads = nn.ModuleList([
OneFormerSegHead(config.image_seg, llm_hidden_size=config.hidden_size)
for _ in range(self.num_layers)
])
if self.mode == "depth":
self.image_depth_heads = nn.ModuleList([
DepthHead(proj_config=config.image_depth, llm_hidden_size=config.hidden_size, use_intermediate_depth=False)
for _ in range(self.num_layers)
])
dav2_cfg = {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
self.dav2_backbone = DepthAnythingV2(**dav2_cfg)
self.dav2_backbone.load_state_dict(torch.load(config.depth_estimator, map_location='cpu'))
for p in self.dav2_backbone.parameters():
p.requires_grad = False
self.da_v2_head = DAv2_Head()
self.da_v2_head.load_state_dict(torch.load(config.depth_estimator), strict=False)
for p in self.da_v2_head.parameters():
p.requires_grad = False
def _get_layer_loss_weight(self, config, prefix):
layer_indices = config[f"{prefix}_layer_indices"]
layer_indices = layer_indices.split("-")
layer_indices = [int(i) - 1 for i in layer_indices]
loss_weight = config[f"{prefix}_loss_weight"]
return layer_indices, loss_weight
def log_gen(self, img_embeds, pil_images, layer_idx, is_train=False):
device = "cuda" if torch.cuda.is_available() else "hip"
pipe = self.pipe.to(device)
images = []
if len(pil_images) > 2:
pil_images = pil_images[:2]
img_embeds = img_embeds[:2]
for img_embed in img_embeds:
image = pipe(image_embeds=img_embed.float().detach(),
num_inference_steps=25,
# guidance_scale=1,,
).images[0]
images.append(image)
if not is_train:
return images
n = len(images)
c = min(n, 16)
r = n // c
images = images[:c*r]
image_grid = make_grid(images, pil_images)
wandb.log({
f"val_gen_images/step_{self.steps}": wandb.Image(image_grid, caption=f"Layer-{layer_idx}")
})
def log_depth(self, depth_preds, layer_idx, depth_targets=None, is_train=False):
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
depth_preds = depth_preds.float().detach()
def _visualize_depth(depth):
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
return Image.fromarray(colored_depth)
pred_depths, gt_depths = [], []
if depth_targets is None:
depth_targets = [None] * len(depth_preds)
from tqdm import tqdm
for pred, target in tqdm(zip(depth_preds, depth_targets), desc="Visualizing Depth..."):
if target is not None:
gt = _visualize_depth(target.float())
gt_depths.append(gt)
pred = _visualize_depth(pred)
pred_depths.append(pred)
if not is_train:
return pred_depths
n = len(pred_depths)
c = min(n, 16)
r = n // c
pred_depths = pred_depths[:c*r]
gt_depths = gt_depths[:c*r]
masks_grid = make_grid(pred_depths, gt_depths)
wandb.log({
f"val_depth_images/step_{self.steps}": wandb.Image(masks_grid, caption=f"Layer-{layer_idx}")
})
def log_seg(self, seg_embeds, pil_images, layer_idx, seg_targets=None, is_train=False):
def _oneformer_prepare_panoptic_instance_prediction(
segmentation: torch.Tensor, segments_info: dict
):
masks = []
classes = []
for segment in segments_info:
id = segment["id"]
label_id = segment["label_id"]
label = self.oneformer.config.id2label[label_id]
mask = segmentation == id
masks.append(mask.float())
classes.append(label)
return masks, classes
pred_masks, gt_masks = [], []
seg_embeds = seg_embeds.detach()
if seg_targets is None:
seg_targets = [None] * len(seg_embeds)
if len(pil_images) > 2:
pil_images = pil_images[:2]
seg_embeds = seg_embeds[:2]
seg_targets = seg_targets[:2]
from tqdm import tqdm
for emb, target, img in tqdm(zip(seg_embeds, seg_targets, pil_images), desc=f"Predicting Segmentation Map..."):
with torch.no_grad():
inputs = self.oneformer_processor(img, ["panoptic"], return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(emb.device, emb.dtype)
inputs["task_inputs"] = inputs["task_inputs"].to(emb.device, emb.dtype)
gt = self.oneformer.get_masks(**inputs, backbone_last_feature=target.unsqueeze(0))
gt = self.oneformer_processor.post_process_panoptic_segmentation(
gt, target_sizes=[img.size[::-1]]
)[0]
gt_msk, gt_cls = _oneformer_prepare_panoptic_instance_prediction(**gt)
gt = visualize_oneformer_masks_on_image(img, gt_msk, gt_cls)
pred = self.oneformer.get_masks(**inputs, backbone_last_feature=emb.unsqueeze(0))
pred = self.oneformer_processor.post_process_panoptic_segmentation(
pred, target_sizes=[img.size[::-1]]
)[0]
pred_msk, pred_cls = _oneformer_prepare_panoptic_instance_prediction(**pred)
pred = visualize_oneformer_masks_on_image(img, pred_msk, pred_cls)
gt_masks.append(gt)
pred_masks.append(pred)
if not is_train:
return pred_masks
n = len(pred_masks)
c = min(n, 16)
r = n // c
pred_masks = pred_masks[:c*r]
gt_masks = gt_masks[:c*r]
masks_grid = make_grid(pred_masks, gt_masks)
wandb.log({
f"val_seg_images/step_{self.steps}": wandb.Image(masks_grid, caption=f"Layer-{layer_idx}")
})
def _emb_loss(self, emb_preds, emb_targets):
emb_targets = emb_targets.to(emb_preds.dtype).to(emb_preds.device)
if emb_targets.shape[0] != emb_preds.shape[0]:
repeat_factor = emb_preds.shape[0] // emb_targets.shape[0]
emb_targets = emb_targets.repeat(repeat_factor, 1, 1)
if emb_targets.shape[0] != emb_preds.shape[0]:
emb_targets = emb_targets[:emb_preds.shape[0]]
emb_mask = emb_mask[:emb_preds.shape[0]]
emb_loss = F.smooth_l1_loss(
emb_preds.float(), emb_targets.float(), reduction="none"
).mean()
return emb_loss
def _get_gen_feats(self, pil_images, device):
gen_feats = []
for img in pil_images:
with torch.no_grad():
clip_ims = self.pipe.feature_extractor(images=img, return_tensors="pt").pixel_values.to(device)
feat = self.pipe.image_encoder(clip_ims).image_embeds
gen_feats.append(feat)
gen_feats = torch.stack(gen_feats, dim=0)
return gen_feats
def _forward_gen(self, gen_preds, layer_index, pil_images, gen_targets):
gen_loss = self._emb_loss(gen_preds, gen_targets)
if dist.get_rank() == 0:
if self.steps % 500 == 0:
try:
self.log_gen(gen_preds.detach(), pil_images, layer_index, is_train=True)
except:
pass
return gen_loss
def _get_dav2_feats(self, pil_images, device):
dav2_gts = []
depth_targets = [[]]
for img in pil_images:
img = img.resize((336, 336))
img = np.array(img)
with torch.no_grad():
feat = self.dav2_backbone.infer_image(img, is_dsg=True)
depth_gts = self.da_v2_head([feat[-1]] * 4)
depth_targets[0].append(feat[-1][0])
min_val = depth_gts.amin(dim=(1, 2), keepdim=True)
max_val = depth_gts.amax(dim=(1, 2), keepdim=True)
depth_gts = (depth_gts - min_val) / (max_val - min_val)
dav2_gts.append(depth_gts.to(device))
dav2_gts = torch.stack(dav2_gts, dim=0).squeeze(1)
for i in range(len(depth_targets)):
depth_targets[i] = (torch.stack(depth_targets[i], dim=0).squeeze(1), None)
return depth_targets, dav2_gts
def _forward_depth(self, all_depth_feats, layer_index, all_depth_targets, depth_pred_maps, depth_gts):
depth_feats, depth_targets = all_depth_feats[0][0], all_depth_targets[0][0]
depth_loss = self._emb_loss(depth_feats, depth_targets)
if dist.get_rank() == 0:
if self.steps % 200 == 0:
try:
self.log_depth(depth_pred_maps.detach(), layer_index, depth_gts, is_train=True)
except:
pass
return depth_loss
def _get_seg_targets(self, pil_images, seg_preds):
def _get_feats(img):
img = img.resize((768, 768))
inputs = self.oneformer_processor(img, ["panoptic"], return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(seg_preds.device, seg_preds.dtype)
with torch.no_grad():
feats = self.oneformer.forward_features(**inputs)
return feats
seg_targets = []
for img in pil_images:
feat = _get_feats(img)
seg_targets.append(feat)
seg_targets = torch.stack(seg_targets, dim=0).squeeze(1)
return seg_targets
def _forward_seg(self, seg_preds, layer_index, pil_images, seg_targets):
seg_loss = self._emb_loss(seg_preds, seg_targets)
if dist.get_rank() == 0:
if self.steps % 200 == 0:
try:
self.log_seg(seg_preds.detach(), pil_images, layer_index, seg_targets, is_train=True)
except:
pass
return seg_loss
def forward_emb_predictor(self, layer_states, idx, i, heads):
inp_tokens = layer_states[idx]
task_emb = heads[i](inp_tokens)
return task_emb
def depth_emb_forward(self, pil_images, layer_states):
depth_preds = []
depth_embs = []
depth_loss = 0
log_dict = {}
if self.mode == "depth":
if pil_images is not None:
depth_targets, depth_gts = self._get_dav2_feats(pil_images, layer_states[0].device)
else:
depth_targets, depth_gts = None, None
for i, idx in enumerate(self.num_layers):
depth_feats = self.forward_emb_predictor(layer_states, idx, i, self.image_depth_heads)
depth_embs.append(depth_feats)
with torch.no_grad():
depth_pred = self.da_v2_head([depth_feats[0]] * 4)
min_val = depth_pred.amin(dim=(1, 2), keepdim=True)
max_val = depth_pred.amax(dim=(1, 2), keepdim=True)
depth_pred = (depth_pred - min_val) / (max_val - min_val)
depth_preds.append(depth_pred)
if depth_targets is not None:
layer_depth_loss = self._forward_depth(depth_feats, idx+1, depth_targets, depth_pred, depth_gts)
depth_loss += layer_depth_loss
if dist.get_rank() == 0:
log_dict = {
**log_dict,
f"{idx}_depth_loss": layer_depth_loss.item(),
}
return depth_preds, depth_embs, depth_loss, log_dict
def seg_emb_forward(self, pil_images, hidden_states, layer_states):
seg_embs = []
seg_loss = 0
log_dict = {}
if "seg" in self.mode:
if pil_images is not None:
seg_targets = self._get_seg_targets(pil_images, hidden_states)
else:
seg_targets = None
for i, idx in enumerate(self.num_layers):
seg_emb = self.forward_emb_predictor(layer_states, idx, i, "seg", self.image_seg_heads)
seg_embs.append(seg_emb)
if seg_targets is not None:
layer_seg_loss = self._forward_seg(seg_emb, idx+1, pil_images, seg_targets)
seg_loss += layer_seg_loss
if dist.get_rank() == 0:
log_dict = {
**log_dict,
f"{idx}_seg_loss": layer_seg_loss.item(),
}
return seg_embs, seg_loss, log_dict
def gen_emb_forward(self, pil_images, hidden_states, layer_states):
img_embs = []
gen_loss = 0
log_dict = {}
if "gen" in self.mode:
if pil_images is not None:
gen_targets = self._get_gen_feats(pil_images, hidden_states.device)
else:
gen_targets = None
for i, idx in enumerate(self.num_layers):
img_emb = self.forward_emb_predictor(layer_states, idx, i, "gen", self.image_gen_heads)
img_embs.append(img_emb)
if gen_targets is not None:
layer_gen_loss = self._forward_gen(img_emb, idx+1, pil_images, gen_targets)
gen_loss += layer_gen_loss
if dist.get_rank() == 0:
log_dict = {
**log_dict,
f"{idx}_gen_loss": layer_gen_loss.item(),
}
return img_embs, gen_loss, log_dict
@torch.no_grad()
def get_visual_interpretations(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithPast]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if True:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes
)
return self.forward(
input_ids=inputs,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=True,
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
pil_images = kwargs.pop("pil_images", None)
inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
inputs['images'] = images
if image_sizes is not None:
inputs['image_sizes'] = image_sizes
if pil_images is not None:
inputs['pil_images'] = pil_images
return inputs