Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
import os | |
import json | |
from tqdm import tqdm | |
import shortuuid | |
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from ola_vlm.conversation import conv_templates, SeparatorStyle | |
from ola_vlm.model.builder import load_pretrained_model | |
from ola_vlm.utils import disable_torch_init | |
from ola_vlm.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path | |
from torch.utils.data import Dataset, DataLoader | |
from datasets import load_dataset | |
from PIL import Image | |
import math | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
def prepare_MMStar(path): | |
os.makedirs(f"{path}/images", exist_ok=True) | |
dataset = load_dataset(path, "val") | |
dataset = dataset["val"] | |
data = [] | |
for i in range(len(dataset)): | |
if not os.path.exists(f"{path}/images/{i}.jpeg"): | |
dataset[i]["image"].save(f"{path}/images/{i}.jpeg") | |
prompt = dataset[i]["question"] + "\n" | |
prompt += "Answer with the option's letter from the given choices directly, such as answer letter 'A' only. \n" | |
d = { | |
"image": f"{path}/images/{i}.jpeg", | |
"question": prompt, | |
"answer": dataset[i]["answer"], | |
"category": dataset[i]["category"], | |
"l2_category": dataset[i]["l2_category"] | |
} | |
data.append(d) | |
return data | |
# Custom dataset class | |
class CustomDataset(Dataset): | |
def __init__(self, data, tokenizer, image_processor, model_config): | |
self.questions = data | |
self.tokenizer = tokenizer | |
self.image_processor = image_processor | |
self.model_config = model_config | |
def __getitem__(self, index): | |
d = self.questions[index] | |
qs = d["question"] | |
image_file = d["image"] | |
ans = d["answer"] | |
if self.model_config.mm_use_im_start_end: | |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
image = Image.open(image_file).convert('RGB') | |
image_tensor = process_images([image], self.image_processor, self.model_config)[0] | |
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') | |
return input_ids, image_tensor, image.size, ans, d["category"], d["l2_category"] | |
def __len__(self): | |
return len(self.questions) | |
def collate_fn(batch): | |
input_ids, image_tensors, image_sizes, answers, cats, cats_l2 = zip(*batch) | |
input_ids = torch.stack(input_ids, dim=0) | |
image_tensors = torch.stack(image_tensors, dim=0) | |
return input_ids, image_tensors, image_sizes, answers, cats, cats_l2 | |
# DataLoader | |
def create_data_loader(questions, tokenizer, image_processor, model_config, batch_size=1, num_workers=4): | |
assert batch_size == 1, "batch_size must be 1" | |
dataset = CustomDataset(questions, tokenizer, image_processor, model_config) | |
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn) | |
return data_loader | |
def eval_model(args): | |
# Model | |
disable_torch_init() | |
model_path = os.path.expanduser(args.model_path) | |
model_name = get_model_name_from_path(model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) | |
questions = prepare_MMStar(args.path) | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
answers_file = os.path.expanduser(args.answers_file) | |
os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
ans_file = open(answers_file, "w") | |
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode: | |
args.conv_mode = args.conv_mode + '_mmtag' | |
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.') | |
data_loader = create_data_loader(questions, tokenizer, image_processor, model.config) | |
for (input_ids, image_tensor, image_sizes, answer, cat, cat_l2), line in tqdm(zip(data_loader, questions), total=len(questions)): | |
input_ids = input_ids.to(device='cuda', non_blocking=True) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), | |
image_sizes=image_sizes, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
top_p=args.top_p, | |
num_beams=args.num_beams, | |
max_new_tokens=args.max_new_tokens, | |
use_cache=True) | |
if not isinstance(output_ids, torch.Tensor): | |
output_ids = output_ids.sequences | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
ans_file.write(json.dumps({"prediction": outputs, | |
"answer": answer[0], | |
"question": line, | |
"category": cat[0], | |
"l2_category": cat_l2[0]}) + "\n") | |
# ans_file.flush() | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--model-base", type=str, default=None) | |
parser.add_argument("--path", type=str, default="MMStar") | |
parser.add_argument("--answers-file", type=str, default="mmstar_answer.jsonl") | |
parser.add_argument("--conv-mode", type=str, default="llava_phi_3") | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--temperature", type=float, default=0.2) | |
parser.add_argument("--top_p", type=float, default=None) | |
parser.add_argument("--num_beams", type=int, default=1) | |
parser.add_argument("--max_new_tokens", type=int, default=128) | |
args = parser.parse_args() | |
eval_model(args) | |