OLA-VLM / ola_vlm /eval /eval_probe_task.py
praeclarumjj3's picture
:zap: add code
9fa3d89
raw
history blame
9.36 kB
import argparse
import torch
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from ola_vlm.conversation import conv_templates
from ola_vlm.model.builder import load_pretrained_model
from ola_vlm.utils import disable_torch_init
from ola_vlm.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
from transformers import OneFormerProcessor
from PIL import Image
import json
import os
from tqdm import tqdm
from icecream import ic
import warnings
warnings.filterwarnings("ignore")
import random
import numpy as np
from analyze.analyze_utils import prepare_coco, prepare_da2k
import math
from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers import DPMSolverMultistepScheduler
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def load_image(image_file):
image = Image.open(image_file).convert('RGB')
return image
import glob
def list_image_files(directory):
image_extensions = ['*.png', '*.jpg', '*.jpeg', '*.gif', '*.bmp', '*.tiff']
image_files = []
for extension in image_extensions:
image_files.extend(glob.glob(os.path.join(directory, extension)))
return image_files
def prep_seginw(dir):
image_files = list_image_files(dir)
prompts = []
for image_file in image_files:
prompts.append("Describe the image")
return image_files, prompts, prompts
def predict(args):
mode = args.mode
name = args.model_path.split("/")[-1]
os.makedirs(f"plots/probes_task/{name}/", exist_ok=True)
# Model
disable_torch_init()
if mode == 'gen' or mode == 'seg':
images, prompts, answers = prepare_coco(args.json_file)
elif mode == 'depth':
images, prompts, answers = prepare_da2k("/mnt/vlpdatasets/sherlock/eval/DA-2K/DA-2K/images", is_eval=True)
images = get_chunk(images, args.num_chunks, args.chunk_idx)
prompts = get_chunk(prompts, args.num_chunks, args.chunk_idx)
answers = get_chunk(answers, args.num_chunks, args.chunk_idx)
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
if mode == "gen":
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"playground/jiteshjain_sherlock/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
elif mode == "seg":
oneformer_processor = OneFormerProcessor.from_pretrained("/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large")
oneformer = OneFormerHead.from_pretrained("/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large")
oneformer = oneformer.to("cuda")
if "mistral" in model_name.lower():
conv_mode = "mistral_instruct"
elif "v1.6-34b" in model_name.lower():
conv_mode = "chatml_direct"
elif "llama3" in model_name.lower():
conv_mode = "llava_llama_3"
elif "qwen" in model_name.lower():
conv_mode = "qwen_1_5"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "phi" in model_name.lower():
conv_mode = "llava_phi_3"
set_seed(42)
if mode == "gen":
try:
layers = model.config.image_gen["layer_indices"]
except:
layers = [i+1 for i in range(32)]
elif mode == "depth":
try:
layers = model.config.image_depth["layer_indices"]
except:
layers = [i+1 for i in range(32)]
elif mode == "seg":
try:
layers = model.config.image_seg["layer_indices"]
except:
layers = [i+1 for i in range(32)]
from tqdm import tqdm
for fname, prompt, answer in tqdm(zip(images, prompts, answers), total=len(prompts)):
conv = conv_templates[conv_mode].copy()
im = fname.split("/")[-1].split(".")[0]
image = load_image(fname)
image_size = image.size
image_tensor = process_images([image], image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
inp = prompt
if image is not None:
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
with torch.inference_mode():
out = model.get_visual_interpretations(
input_ids,
images=image_tensor,
image_sizes=image_size,
)
if mode == "seg":
seg_embs = out.seg_embs
inputs = oneformer_processor(image, ["semantic"], return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype)
inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype)
backbone_features = oneformer.get_backbone_feats(**inputs)
for i, seg_emb in enumerate(seg_embs):
pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features)
pred = oneformer_processor.post_process_semantic_segmentation(
pred, target_sizes=[image.size[::-1]]
)[0]
pred = pred.squeeze().cpu().numpy().astype(np.uint8)
pred = Image.fromarray(pred)
if not os.path.exists(f"plots/probes_task/{name}/seg/layer_{layers[i]}"):
os.makedirs(f"plots/probes_task/{name}/seg/layer_{layers[i]}", exist_ok=True)
save_path = os.path.join(f"plots/probes_task/{name}/seg/layer_{layers[i]}", fname.split("/")[-1].replace("jpg", "png"))
pred.save(save_path)
elif mode == "gen":
img_embeds = out.image_embs
images = []
for img_emb in img_embeds:
gen_image = pipe(image_embeds=img_emb.squeeze(1),
num_inference_steps=25,
).images[0]
images.append(gen_image)
for i, image in enumerate(images):
image = image.resize((256, 256), Image.LANCZOS)
if not os.path.exists(f"plots/probes_task/{name}/gen/layer_{layers[i]}"):
os.makedirs(f"plots/probes_task/{name}/gen/layer_{layers[i]}", exist_ok=True)
save_path = os.path.join(f"plots/probes_task/{name}/gen/layer_{layers[i]}", fname.split("/")[-1])
image.save(save_path)
elif mode == "depth":
depth_preds = out.depth_preds
for i, depth_pred in enumerate(depth_preds):
if not os.path.exists(f"plots/probes_task/{name}/depth/layer_{layers[i]}"):
os.makedirs(f"plots/probes_task/{name}/depth/layer_{layers[i]}", exist_ok=True)
depth = depth_pred.squeeze(0).cpu().numpy() * 255.0
depth = depth.astype(np.uint8)
depth = Image.fromarray(depth)
save_path = os.path.join(f"plots/probes_task/{name}/depth/layer_{layers[i]}", fname.split("/")[-1])
depth.save(save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="/mnt/projects4jw/jiteshjain_sherlock/llava-v1.5-7b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--json-file", type=str, default="/mnt/projects4jw/jiteshjain_sherlock/datasets/coco/annotations/captions_val2017.json")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=10)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--mode", type=str, default="gen")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
args = parser.parse_args()
predict(args)