Spaces:
Running
on
Zero
Running
on
Zero
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Tuple | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
MPT = auto() | |
PLAIN = auto() | |
LLAMA_3 = auto() | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
version: str = "Unknown" | |
skip_next: bool = False | |
def get_prompt(self): | |
messages = self.messages | |
if len(messages) > 0 and type(messages[0][1]) is tuple: | |
messages = self.messages.copy() | |
init_role, init_msg = messages[0].copy() | |
init_msg = init_msg[0].replace("<image>", "").strip() | |
if 'mmtag' in self.version: | |
messages[0] = (init_role, init_msg) | |
messages.insert(0, (self.roles[0], "<Image><image></Image>")) | |
messages.insert(1, (self.roles[1], "Received.")) | |
else: | |
messages[0] = (init_role, "<image>\n" + init_msg) | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = self.system + self.sep | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + ": " + message + self.sep | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.MPT: | |
ret = self.system + self.sep | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + message + self.sep | |
else: | |
ret += role | |
elif self.sep_style == SeparatorStyle.LLAMA_2: | |
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg | |
wrap_inst = lambda msg: f"[INST] {msg} [/INST]" | |
ret = "" | |
for i, (role, message) in enumerate(messages): | |
if i == 0: | |
assert message, "first message should not be none" | |
assert role == self.roles[0], "first message should come from user" | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
if i == 0: message = wrap_sys(self.system) + message | |
if i % 2 == 0: | |
message = wrap_inst(message) | |
ret += self.sep + message | |
else: | |
ret += " " + message + " " + self.sep2 | |
else: | |
ret += "" | |
ret = ret.lstrip(self.sep) | |
elif self.sep_style == SeparatorStyle.CHATML: | |
ret = "" if self.system == "" else self.system + self.sep + "\n" | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, images, _ = message | |
message = "<image>" * len(images) + message | |
ret += role + "\n" + message + self.sep + "\n" | |
else: | |
ret += role + "\n" | |
return ret | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
return ret | |
def append_message(self, role, message): | |
if isinstance(self.messages, tuple): | |
self.messages = list(self.messages) | |
self.messages.append([role, message]) | |
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672): | |
if image_process_mode == "Pad": | |
def expand2square(pil_img, background_color=(122, 116, 104)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image) | |
elif image_process_mode in ["Default", "Crop"]: | |
pass | |
elif image_process_mode == "Resize": | |
image = image.resize((336, 336)) | |
else: | |
raise ValueError(f"Invalid image_process_mode: {image_process_mode}") | |
if max(image.size) > max_len: | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
if return_pil: | |
return image | |
else: | |
buffered = BytesIO() | |
image.save(buffered, format=image_format) | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
return img_b64_str | |
def get_images(self, return_pil=False): | |
images = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
msg, image, image_process_mode = msg | |
image = self.process_image(image, image_process_mode, return_pil=return_pil) | |
images.append(image) | |
return images | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
msg, image, image_process_mode = msg | |
img_b64_str = self.process_image( | |
image, "Default", return_pil=False, | |
image_format='JPEG') | |
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />' | |
msg = img_str + msg.replace('<image>', '').strip() | |
ret.append([msg, None]) | |
else: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
version=self.version) | |
def dict(self): | |
if len(self.get_images()) > 0: | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
conv_vicuna_v1 = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="v1", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_llava_llama_3 = Conversation( | |
system="""<|start_header_id|>system<|end_header_id|>\n\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""", | |
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"), | |
version="llama3", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.MPT, | |
sep="<|eot_id|>", | |
) | |
conv_llava_phi_3 = Conversation( | |
system="""<|system|>\nYou are a helpful AI assistant.""", | |
roles=("\n<|user|>\n", "\n<|assistant|>\n"), | |
version="phi3", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.MPT, | |
sep="<|end|>", | |
) | |
default_conversation = conv_llava_phi_3 | |
conv_templates = { | |
"v1": conv_vicuna_v1, | |
"vicuna_v1": conv_vicuna_v1, | |
"llava_phi_3": conv_llava_phi_3, | |
"llava_llama_3": conv_llava_llama_3, | |
} | |
if __name__ == "__main__": | |
print(default_conversation.get_prompt()) | |