Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from torch_utils import training_stats | |
from torch_utils import misc | |
from torch_utils.ops import conv2d_gradfix | |
from icecream import ic | |
from .high_receptive_pl import HRFPL | |
import os | |
#---------------------------------------------------------------------------- | |
class Loss: | |
def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain): # to be overridden by subclass | |
raise NotImplementedError() | |
#---------------------------------------------------------------------------- | |
class StyleGAN2Loss(Loss): | |
def __init__(self, device, G_encoder, G_mapping, G_synthesis, D, augment_pipe=None, style_mixing_prob=0.9, r1_gamma=10, pl_batch_shrink=2, pl_decay=0.01, pl_weight=2): | |
super().__init__() | |
self.device = device | |
self.G_encoder = G_encoder | |
self.G_mapping = G_mapping | |
self.G_synthesis = G_synthesis | |
self.D = D | |
self.augment_pipe = augment_pipe | |
self.style_mixing_prob = style_mixing_prob | |
self.r1_gamma = r1_gamma | |
self.pl_batch_shrink = pl_batch_shrink | |
self.pl_decay = pl_decay | |
self.pl_weight = pl_weight | |
self.pl_mean = torch.zeros([], device=device) | |
self.run_hrfpl = HRFPL(weight=5, weights_path=os.getcwd()) | |
def run_G(self, r_img, c, sync): | |
with misc.ddp_sync(self.G_encoder, sync): | |
x_global, z, feats = self.G_encoder(r_img, c) | |
with misc.ddp_sync(self.G_mapping, sync): | |
ws = self.G_mapping(z, c) | |
if self.style_mixing_prob > 0: | |
with torch.autograd.profiler.record_function('style_mixing'): | |
cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1]) | |
cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1])) | |
ws[:, cutoff:] = self.G_mapping(torch.randn_like(z), c, skip_w_avg_update=True)[:, cutoff:] | |
with misc.ddp_sync(self.G_synthesis, sync): | |
img = self.G_synthesis(x_global, feats, ws) | |
return img, ws | |
def run_D(self, img, c, sync): | |
with misc.ddp_sync(self.D, sync): | |
logits = self.D(img, c) | |
return logits | |
def accumulate_gradients(self, phase, erased_img, real_img, mask, real_c, gen_c, sync, gain): | |
assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth'] | |
do_Gmain = (phase in ['Gmain', 'Gboth']) | |
do_Dmain = (phase in ['Dmain', 'Dboth']) | |
do_Dr1 = (phase in ['Dreg', 'Dboth']) and (self.r1_gamma != 0) | |
# Gmain: Maximize logits for generated images. | |
if do_Gmain: | |
with torch.autograd.profiler.record_function('Gmain_forward'): | |
g_inputs = torch.cat([0.5 - mask, erased_img], dim=1) | |
gen_img, _ = self.run_G(g_inputs, gen_c, sync=sync) # May get synced by Gpl. | |
gen_img = gen_img * mask + real_img * (1 - mask) | |
loss_rec = 10 * torch.nn.functional.l1_loss(gen_img, real_img) | |
loss_pl = self.run_hrfpl(gen_img, real_img) | |
if self.augment_pipe is not None: | |
gen_img = self.augment_pipe(gen_img) | |
d_inputs = torch.cat([0.5 - mask, gen_img], dim=1) | |
gen_logits = self.run_D(d_inputs, gen_c, sync=False) | |
loss_G = torch.nn.functional.softplus(-gen_logits) # -log(sigmoid(gen_logits)) | |
loss_Gmain = loss_G.mean() + loss_rec + loss_pl | |
training_stats.report('Loss/G/loss', loss_G) | |
training_stats.report('Loss/G/rec_loss', loss_rec) | |
training_stats.report('Loss/G/main_loss', loss_Gmain) | |
training_stats.report('Loss/G/pl_loss', loss_pl) | |
with torch.autograd.profiler.record_function('Gmain_backward'): | |
loss_Gmain.mul(gain).backward() | |
# Dmain: Minimize logits for generated images. | |
loss_Dgen = 0 | |
if do_Dmain: | |
with torch.autograd.profiler.record_function('Dgen_forward'): | |
g_inputs = torch.cat([0.5 - mask, erased_img], dim=1) | |
gen_img, _ = self.run_G(g_inputs, gen_c, sync=sync) # May get synced by Gpl. | |
gen_img = gen_img * mask + real_img * (1 - mask) | |
if self.augment_pipe is not None: | |
gen_img = self.augment_pipe(gen_img) | |
d_inputs = torch.cat([0.5 - mask, gen_img], dim=1) | |
gen_logits = self.run_D(d_inputs, gen_c, sync=False) # Gets synced by loss_Dreal. | |
loss_Dgen = torch.nn.functional.softplus(gen_logits) # -log(1 - sigmoid(gen_logits)) | |
with torch.autograd.profiler.record_function('Dgen_backward'): | |
loss_Dgen.mean().mul(gain).backward() | |
# Dmain: Maximize logits for real images. | |
# Dr1: Apply R1 regularization. | |
if do_Dmain or do_Dr1: | |
name = 'Dreal_Dr1' if do_Dmain and do_Dr1 else 'Dreal' if do_Dmain else 'Dr1' | |
with torch.autograd.profiler.record_function(name + '_forward'): | |
real_img_tmp = real_img.detach().requires_grad_(do_Dr1) | |
if self.augment_pipe is not None: | |
real_img_tmp = self.augment_pipe(real_img_tmp) | |
d_inputs = torch.cat([0.5 - mask, real_img_tmp], dim=1) | |
real_logits = self.run_D(d_inputs, real_c, sync=sync) | |
loss_Dreal = 0 | |
if do_Dmain: | |
loss_Dreal = torch.nn.functional.softplus(-real_logits) # -log(sigmoid(real_logits)) | |
training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal) | |
loss_Dr1 = 0 | |
if do_Dr1: | |
with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients(): | |
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp], create_graph=True, only_inputs=True)[0] | |
r1_penalty = r1_grads.square().sum([1,2,3]) | |
loss_Dr1 = r1_penalty * (self.r1_gamma / 2) | |
training_stats.report('Loss/r1_penalty', r1_penalty) | |
training_stats.report('Loss/D/reg', loss_Dr1) | |
with torch.autograd.profiler.record_function(name + '_backward'): | |
(real_logits * 0 + loss_Dreal + loss_Dr1).mean().mul(gain).backward() | |
#---------------------------------------------------------------------------- | |