FcF-Inpainting / training /training_loop.py
praeclarumjj3's picture
:zap: Build App
9eae6e7
raw
history blame
25 kB
import os
import time
import copy
import json
import pickle
import psutil
import PIL.Image
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
import legacy
import warnings
warnings.filterwarnings("ignore")
from colorama import init
from colorama import Fore, Style
from icecream import ic
init(autoreset=True)
from etaprogress.progress import ProgressBar
import sys
import matplotlib.pyplot as plt
from evaluate import save_gen, create_folders
from metrics.evaluation.data import PrecomputedInpaintingResultsDataset
from metrics.evaluation.evaluator import InpaintingEvaluator
from metrics.evaluation.losses.base_loss import FIDScore
from metrics.evaluation.utils import load_yaml
#----------------------------------------------------------------------------
def setup_snapshot_image_grid(training_set, random_seed=0):
rnd = np.random.RandomState(random_seed)
gw = np.clip(5120 // training_set.image_shape[2], 0, 1)
gh = np.clip(5120 // training_set.image_shape[1], 10, 30)
# No labels => show random subset of training samples.
if not training_set.has_labels:
all_indices = list(range(len(training_set)))
rnd.shuffle(all_indices)
grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)]
else:
# Group training samples by label.
label_groups = dict() # label => [idx, ...]
for idx in range(len(training_set)):
label = tuple(training_set.get_details(idx).raw_label.flat[::-1])
if label not in label_groups:
label_groups[label] = []
label_groups[label].append(idx)
# Reorder.
label_order = sorted(label_groups.keys())
for label in label_order:
rnd.shuffle(label_groups[label])
# Organize into grid.
grid_indices = []
for y in range(gh):
label = label_order[y % len(label_order)]
indices = label_groups[label]
grid_indices += [indices[x % len(indices)] for x in range(gw)]
label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))]
# Load data.
images, masks, labels = zip(*[training_set[i] for i in grid_indices])
return (gw, gh), np.stack(images), np.stack(masks), np.stack(labels)
#----------------------------------------------------------------------------
def save_image_grid(img, erased_img, inv_mask, pred_img, fname, drange, grid_size):
lo, hi = (0, 255)
model_lo, model_hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
inv_mask = np.squeeze(np.stack([inv_mask]*3, axis=1))
inv_mask = np.asarray(inv_mask, dtype=np.float32)
inv_mask = np.rint(inv_mask).clip(0, 1).astype(np.uint8)
erased_img = np.asarray(erased_img, dtype=np.float32)
erased_img = (erased_img - lo) * (255 / (hi - lo))
erased_img = np.rint(erased_img).clip(0, 255).astype(np.uint8)
pred_img = np.asarray(pred_img, dtype=np.float32)
pred_img = (pred_img - model_lo) * (255 / (model_hi - model_lo))
pred_img = np.rint(pred_img).clip(0, 255).astype(np.uint8)
comp_img = img * (1 - inv_mask) + pred_img * inv_mask
f_img = np.concatenate((img, inv_mask * 255, erased_img, pred_img, comp_img), axis=1)
gw, gh = grid_size
gw *= f_img.shape[1] // 3
_N, C, H, W = img.shape
f_img = f_img.reshape(gh, gw, C, H, W)
f_img = f_img.transpose(0, 3, 1, 4, 2)
f_img = f_img.reshape(gh * H, gw * W, C)
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(f_img[:, :, 0], 'L').save(fname + '.png')
if C == 3:
PIL.Image.fromarray(f_img, 'RGB').save(fname + '.png')
#----------------------------------------------------------------------------
def training_loop(
run_dir = '.', # Output directory.
eval_img_data = None, # Evaluation Image data
resolution = 256, # Resolution of evaluation image
training_set_kwargs = {}, # Options for training set.
data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader.
G_kwargs = {}, # Options for generator network.
D_kwargs = {}, # Options for discriminator network.
G_opt_kwargs = {}, # Options for generator optimizer.
D_opt_kwargs = {}, # Options for discriminator optimizer.
augment_kwargs = None, # Options for augmentation pipeline. None = disable.
loss_kwargs = {}, # Options for loss function.
metrics = [], # Metrics to evaluate during training.
random_seed = 0, # Global random seed.
num_gpus = 1, # Number of GPUs participating in the training.
rank = 0, # Rank of the current process in [0, num_gpus[.
batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus.
batch_gpu = 4, # Number of samples processed at a time by one GPU.
ema_kimg = 10, # Half-life of the exponential moving average (EMA) of generator weights.
ema_rampup = None, # EMA ramp-up coefficient.
G_reg_interval = None, # How often to perform regularization for G? None = disable lazy regularization.
D_reg_interval = 16, # How often to perform regularization for D? None = disable lazy regularization.
augment_p = 0, # Initial value of augmentation probability.
ada_target = None, # ADA target value. None = fixed p.
ada_interval = 4, # How often to perform ADA adjustment?
ada_kimg = 500, # ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit.
total_kimg = 25000, # Total length of the training, measured in thousands of real images.
kimg_per_tick = 4, # Progress snapshot interval.
image_snapshot_ticks = 50, # How often to save image snapshots? None = disable.
network_snapshot_ticks = 50, # How often to save network snapshots? None = disable.
resume_pkl = None, # Network pickle to resume training from.
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32?
abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks.
progress_fn = None, # Callback function for updating training progress. Called for all ranks.
):
# Initialize.
start_time = time.time()
device = torch.device('cuda', rank)
np.random.seed(random_seed * num_gpus + rank)
torch.manual_seed(random_seed * num_gpus + rank)
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul
torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions
conv2d_gradfix.enabled = True # Improves training speed.
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
eval_config = load_yaml('metrics/configs/eval2_gpu.yaml')
# Load training set.
if rank == 0:
print(Fore.GREEN + 'Loading training set...')
training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset
training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed)
training_loader = torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs)
training_set_iterator = iter(training_loader)
if rank == 0:
print()
print(Fore.GREEN + 'Num images: ', len(training_set))
print(Fore.GREEN + 'Image shape:', training_set.image_shape)
print(Fore.GREEN + 'Label shape:', training_set.label_shape)
print()
# Construct networks.
if rank == 0:
print('Constructing networks...')
common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels)
G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Modul
G_ema = copy.deepcopy(G).eval()
# Resume from existing pickle.
if (resume_pkl is not None) and (rank == 0):
print(f'Resuming from "{resume_pkl}"')
with dnnlib.util.open_url(resume_pkl) as f:
resume_data = legacy.load_network_pkl(f)
for name, module in [('G', G), ('D', D), ('G_ema', G_ema)]:
misc.copy_params_and_buffers(resume_data[name], module, require_all=False)
# Print network parameters
if rank == 0:
netG_params = sum(p.numel() for p in G.parameters())
print(Fore.GREEN +"Generator Params: {} M".format(netG_params/1e6))
netD_params = sum(p.numel() for p in D.parameters())
print(Fore.GREEN +"Discriminator Params: {} M".format(netD_params/1e6))
# Setup augmentation.
if rank == 0:
print(Fore.YELLOW + 'Setting up augmentation...')
augment_pipe = None
ada_stats = None
if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None):
augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
augment_pipe.p.copy_(torch.as_tensor(augment_p))
if ada_target is not None:
ada_stats = training_stats.Collector(regex='Loss/signs/real')
# Distribute across GPUs.
if rank == 0:
print(Fore.CYAN + f'Distributing across {num_gpus} GPUs...')
ddp_modules = dict()
for name, module in [('G_encoder', G.encoder), ('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe)]:
if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0:
module.requires_grad_(True)
module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False, find_unused_parameters=True)
module.requires_grad_(False)
if name is not None:
ddp_modules[name] = module
# Setup training phases.
if rank == 0:
print('Setting up training phases...')
loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) # subclass of training.losses.loss.Loss
phases = []
for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]:
if reg_interval is None:
opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)]
else: # Lazy regularization.
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)]
phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)]
for phase in phases:
phase.start_event = None
phase.end_event = None
if rank == 0:
phase.start_event = torch.cuda.Event(enable_timing=True)
phase.end_event = torch.cuda.Event(enable_timing=True)
# Export sample images.
grid_size = None
grid_c = None
if rank == 0:
print('Exporting sample images...')
grid_size, images, masks, labels = setup_snapshot_image_grid(training_set=training_set)
erased_images = images * (1 - masks)
grid_img = (torch.from_numpy(images).to(torch.float32) / 127.5 - 1).to(device)
grid_mask = torch.from_numpy(masks).to(torch.float32).to(device)
grid_erased_img = grid_img * (1 - grid_mask)
grid_img = grid_img.split(batch_gpu)
grid_mask = grid_mask.split(batch_gpu)
grid_erased_img = grid_erased_img.split(batch_gpu)
grid_c = torch.from_numpy(labels).to(torch.float32).to(device).split(batch_gpu)
pred_images = torch.cat([G_ema(img=torch.cat([0.5 - mask, erased_img], dim=1), c=c, noise_mode='const').cpu() for erased_img, mask, c in zip(grid_erased_img, grid_mask, grid_c)])
save_image_grid(images, erased_images, masks, pred_images.detach().numpy(), os.path.join(run_dir, 'run_init'), drange=[-1,1], grid_size=grid_size)
# Initialize logs.
if rank == 0:
print('Initializing logs...')
stats_collector = training_stats.Collector(regex='.*')
stats_metrics = dict()
stats_jsonl = None
stats_tfevents = None
if rank == 0:
stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt')
try:
import torch.utils.tensorboard as tensorboard
stats_tfevents = tensorboard.SummaryWriter(run_dir)
except ImportError as err:
print('Skipping tfevents export:', err)
# Train.
if rank == 0:
print(Fore.GREEN + Style.BRIGHT + f'Training for {total_kimg} kimg...')
print()
total = total_kimg * 1000
bar = ProgressBar(total, max_width=80)
cur_nimg = 0
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
batch_idx = 0
if progress_fn is not None:
progress_fn(0, total_kimg)
while True:
# Fetch training data.
with torch.autograd.profiler.record_function('data_fetch'):
phase_real_imgs, phase_masks, phase_real_cs = next(training_set_iterator)
# phase_erased_img = ((phase_real_imgs * (1 - phase_masks)).to(device).to(torch.float32) / 127.5 - 1).split(batch_gpu)
phase_real_img = (phase_real_imgs.to(device).to(torch.float32) / 127.5 - 1)
phase_inv_mask = (phase_masks.to(device).to(torch.float32))
phase_erased_img = phase_real_img * (1 - phase_inv_mask)
phase_erased_img = phase_erased_img.split(batch_gpu)
phase_real_img = phase_real_img.split(batch_gpu)
phase_inv_mask = phase_inv_mask.split(batch_gpu)
phase_real_c = phase_real_cs.to(device).split(batch_gpu)
all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)]
all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device)
all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)]
# Execute training phases.
for phase, phase_gen_c in zip(phases, all_gen_c):
if batch_idx % phase.interval != 0:
continue
# Initialize gradient accumulation.
if phase.start_event is not None:
phase.start_event.record(torch.cuda.current_stream(device))
phase.opt.zero_grad(set_to_none=True)
phase.module.requires_grad_(True)
# Accumulate gradients over multiple rounds.
for round_idx, (erased_img, real_img, mask, real_c, gen_c) in enumerate(zip(phase_erased_img, phase_real_img, phase_inv_mask, phase_real_c, phase_gen_c)):
sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1)
gain = phase.interval
loss.accumulate_gradients(phase=phase.name, erased_img=erased_img, real_img=real_img, mask=mask, real_c=real_c, gen_c=gen_c, sync=sync, gain=gain)
# Update weights.
phase.module.requires_grad_(False)
with torch.autograd.profiler.record_function(phase.name + '_opt'):
for param in phase.module.parameters():
if param.grad is not None:
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
phase.opt.step()
if phase.end_event is not None:
phase.end_event.record(torch.cuda.current_stream(device))
# Update G_ema.
with torch.autograd.profiler.record_function('Gema'):
ema_nimg = ema_kimg * 1000
if ema_rampup is not None:
ema_nimg = min(ema_nimg, cur_nimg * ema_rampup)
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
for p_ema, p in zip(G_ema.parameters(), G.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(G_ema.buffers(), G.buffers()):
b_ema.copy_(b)
# Update state.
cur_nimg += batch_size
batch_idx += 1
if rank == 0:
bar.numerator = cur_nimg
print(bar, end='\r')
# Execute ADA heuristic.
if (ada_stats is not None) and (batch_idx % ada_interval == 0):
ada_stats.update()
adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000)
augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device)))
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000):
continue
# Print status line, accumulating the same information in stats_collector.
tick_end_time = time.time()
fields = []
fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"]
fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"]
fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"]
fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"]
fields += [f"cpumem GB {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"]
fields += [f"gpumem GB {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"]
torch.cuda.reset_peak_memory_stats()
fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.4f}"]
training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60))
if rank == 0:
print(Fore.CYAN + Style.BRIGHT + ' '.join(fields))
# Check for abort.
if (not done) and (abort_fn is not None) and abort_fn():
done = True
if rank == 0:
print()
print(Fore.RED + 'Aborting...')
# Save network snapshot.
snapshot_pkl = None
snapshot_data = None
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0) and cur_tick is not 0:
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs))
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe)]:
if module is not None:
if num_gpus > 1:
misc.check_ddp_consistency(module, ignore_regex=r'.*\.w_avg')
module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
snapshot_data[name] = module
del module # conserve memory
snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl')
if rank == 0:
with open(snapshot_pkl, 'wb') as f:
pickle.dump(snapshot_data, f)
if (snapshot_data is not None) and metrics and (done or cur_tick % network_snapshot_ticks == 0) and cur_tick is not 0:
msk_type = eval_img_data.split('/')[-1]
if rank == 0:
create_folders(msk_type)
label = torch.zeros([1, snapshot_data['G_ema'].c_dim]).to(device)
save_gen(snapshot_data['G_ema'], rank, num_gpus, device, eval_img_data, resolution, label, 1, msk_type)
if rank == 0:
eval_dataset = PrecomputedInpaintingResultsDataset(eval_img_data, f'fid_gens/{msk_type}', **eval_config.dataset_kwargs)
metrics = {
'fid': FIDScore()
}
evaluator = InpaintingEvaluator(eval_dataset, scores=metrics, area_grouping=False,
integral_title='lpips_fid100_f1', integral_func=None,
**eval_config.evaluator_kwargs)
results = evaluator.dist_evaluate(device, num_gpus=1, rank=0)
fid_score = round(results[('fid', 'total')]['mean'], 5)
stats_metrics.update({'fid': fid_score})
print(Fore.GREEN + Style.BRIGHT + f' FID Score: {fid_score}')
del snapshot_data # conserve memory
# Save image snapshot.
if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0):
pred_images = torch.cat([G_ema(img=torch.cat([0.5 - mask, erased_img], dim=1), c=c, noise_mode='const').cpu() for erased_img, mask, c in zip(grid_erased_img, grid_mask, grid_c)])
save_image_grid(images, erased_images, masks, pred_images.detach().numpy(), os.path.join(run_dir, f'run_{cur_nimg//1000:06d}'), drange=[-1,1], grid_size=grid_size)
# Collect statistics.
for phase in phases:
value = []
if (phase.start_event is not None) and (phase.end_event is not None):
phase.end_event.synchronize()
value = phase.start_event.elapsed_time(phase.end_event)
training_stats.report0('Timing/' + phase.name, value)
stats_collector.update()
stats_dict = stats_collector.as_dict()
if rank == 0:
losses = []
for key in stats_dict.keys():
if 'Loss/D' in key or 'Loss/G' in key:
losses += [f"{key}: {(stats_dict[key]['mean']):<.4f}"]
print(Fore.MAGENTA + Style.BRIGHT + ' '.join(losses))
# Update logs.
timestamp = time.time()
if stats_jsonl is not None:
fields = dict(stats_dict, timestamp=timestamp)
stats_jsonl.write(json.dumps(fields) + '\n')
stats_jsonl.flush()
if stats_tfevents is not None:
global_step = int(cur_nimg / 1e3)
walltime = timestamp - start_time
for name, value in stats_dict.items():
stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
for name, value in stats_metrics.items():
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
stats_tfevents.flush()
if progress_fn is not None:
progress_fn(cur_nimg // 1000, total_kimg)
# Update state.
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - tick_end_time
if rank == 0:
sys.stdout.flush()
if done:
break
# Done.
if rank == 0:
print()
print(Fore.YELLOW + 'Exiting...')
#----------------------------------------------------------------------------