Spaces:
Runtime error
Runtime error
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2 | |
from torchvision.utils import save_image | |
from PIL import Image | |
from pytorch_lightning import seed_everything | |
import subprocess | |
from collections import OrderedDict | |
import re | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
import os | |
import requests | |
from io import BytesIO | |
from annotator.util import resize_image, HWC3, resize_points, get_bounding_box, save_input_to_file | |
import torch | |
from safetensors.torch import load_file | |
from collections import defaultdict | |
from diffusers import StableDiffusionControlNetPipeline | |
from diffusers import ControlNetModel, UniPCMultistepScheduler | |
from utils.stable_diffusion_controlnet import ControlNetModel2 | |
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline, \ | |
StableDiffusionControlNetInpaintMixingPipeline, prepare_mask_image | |
# need the latest transformers | |
# pip install git+https://github.com/huggingface/transformers.git | |
from transformers import AutoProcessor, Blip2ForConditionalGeneration | |
from diffusers import ControlNetModel | |
import PIL.Image | |
# Segment-Anything init. | |
# pip install git+https://github.com/facebookresearch/segment-anything.git | |
try: | |
from segment_anything import ( | |
sam_model_registry, | |
SamAutomaticMaskGenerator, | |
SamPredictor, | |
) | |
except ImportError: | |
print("segment_anything not installed") | |
result = subprocess.run( | |
[ | |
"pip", | |
"install", | |
"git+https://github.com/facebookresearch/segment-anything.git", | |
], | |
check=True, | |
) | |
print(f"Install segment_anything {result}") | |
from segment_anything import ( | |
sam_model_registry, | |
SamAutomaticMaskGenerator, | |
SamPredictor, | |
) | |
if not os.path.exists("./models/sam_vit_h_4b8939.pth"): | |
result = subprocess.run( | |
[ | |
"wget", | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
"-P", | |
"models", | |
], | |
check=True, | |
) | |
print(f"Download sam_vit_h_4b8939.pth {result}") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
config_dict = OrderedDict( | |
[ | |
("LAION Pretrained(v0-4)-SD15", "shgao/edit-anything-v0-4-sd15"), | |
("LAION Pretrained(v0-4)-SD21", "shgao/edit-anything-v0-4-sd21"), | |
("LAION Pretrained(v0-3)-SD21", "shgao/edit-anything-v0-3"), | |
("SAM Pretrained(v0-1)-SD21", "shgao/edit-anything-v0-1-1"), | |
] | |
) | |
def init_sam_model(sam_generator=None, mask_predictor=None): | |
if sam_generator is not None and mask_predictor is not None: | |
return sam_generator, mask_predictor | |
sam_checkpoint = "models/sam_vit_h_4b8939.pth" | |
model_type = "default" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
sam_generator = ( | |
SamAutomaticMaskGenerator( | |
sam) if sam_generator is None else sam_generator | |
) | |
mask_predictor = SamPredictor( | |
sam) if mask_predictor is None else mask_predictor | |
return sam_generator, mask_predictor | |
def init_blip_processor(): | |
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
return blip_processor | |
def init_blip_model(): | |
blip_model = Blip2ForConditionalGeneration.from_pretrained( | |
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto" | |
) | |
return blip_model | |
def get_pipeline_embeds(pipeline, prompt, negative_prompt, device): | |
# https://github.com/huggingface/diffusers/issues/2136 | |
"""Get pipeline embeds for prompts bigger than the maxlength of the pipe | |
:param pipeline: | |
:param prompt: | |
:param negative_prompt: | |
:param device: | |
:return: | |
""" | |
max_length = pipeline.tokenizer.model_max_length | |
# # simple way to determine length of tokens | |
# count_prompt = len(re.split(r",", prompt)) | |
# count_negative_prompt = len(re.split(r",", negative_prompt)) | |
# # create the tensor based on which prompt is longer | |
# if count_prompt >= count_negative_prompt: | |
# input_ids = pipeline.tokenizer( | |
# prompt, return_tensors="pt", truncation=False | |
# ).input_ids.to(device) | |
# shape_max_length = input_ids.shape[-1] | |
# negative_ids = pipeline.tokenizer( | |
# negative_prompt, | |
# truncation=False, | |
# padding="max_length", | |
# max_length=shape_max_length, | |
# return_tensors="pt", | |
# ).input_ids.to(device) | |
# else: | |
# negative_ids = pipeline.tokenizer( | |
# negative_prompt, return_tensors="pt", truncation=False | |
# ).input_ids.to(device) | |
# shape_max_length = negative_ids.shape[-1] | |
# input_ids = pipeline.tokenizer( | |
# prompt, | |
# return_tensors="pt", | |
# truncation=False, | |
# padding="max_length", | |
# max_length=shape_max_length, | |
# ).input_ids.to(device) | |
# concat_embeds = [] | |
# neg_embeds = [] | |
# for i in range(0, shape_max_length, max_length): | |
# concat_embeds.append(pipeline.text_encoder( | |
# input_ids[:, i: i + max_length])[0]) | |
# neg_embeds.append(pipeline.text_encoder( | |
# negative_ids[:, i: i + max_length])[0]) | |
input_ids = pipeline.tokenizer( | |
prompt, return_tensors="pt", truncation=False | |
).input_ids.to(device) | |
negative_ids = pipeline.tokenizer( | |
negative_prompt, return_tensors="pt", truncation=False | |
).input_ids.to(device) | |
shape_max_length = max(input_ids.shape[-1],negative_ids.shape[-1]) | |
if input_ids.shape[-1]>negative_ids.shape[-1]: | |
negative_ids = pipeline.tokenizer( | |
negative_prompt, | |
truncation=False, | |
padding="max_length", | |
max_length=shape_max_length, | |
return_tensors="pt", | |
).input_ids.to(device) | |
else: | |
input_ids = pipeline.tokenizer( | |
prompt, | |
return_tensors="pt", | |
truncation=False, | |
padding="max_length", | |
max_length=shape_max_length, | |
).input_ids.to(device) | |
concat_embeds = [] | |
neg_embeds = [] | |
for i in range(0, shape_max_length, max_length): | |
concat_embeds.append(pipeline.text_encoder( | |
input_ids[:, i: i + max_length])[0]) | |
neg_embeds.append(pipeline.text_encoder( | |
negative_ids[:, i: i + max_length])[0]) | |
return torch.cat(concat_embeds, dim=1), torch.cat(neg_embeds, dim=1) | |
def load_lora_weights(pipeline, checkpoint_path, multiplier, device, dtype): | |
LORA_PREFIX_UNET = "lora_unet" | |
LORA_PREFIX_TEXT_ENCODER = "lora_te" | |
# load LoRA weight from .safetensors | |
print('device: {}'.format(device)) | |
if isinstance(checkpoint_path, str): | |
state_dict = load_file(checkpoint_path, device=device) | |
updates = defaultdict(dict) | |
for key, value in state_dict.items(): | |
# it is suggested to print out the key, it usually will be something like below | |
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" | |
layer, elem = key.split(".", 1) | |
updates[layer][elem] = value | |
# directly update weight in diffusers model | |
for layer, elems in updates.items(): | |
if "text" in layer: | |
layer_infos = layer.split( | |
LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") | |
curr_layer = pipeline.text_encoder | |
else: | |
layer_infos = layer.split( | |
LORA_PREFIX_UNET + "_")[-1].split("_") | |
curr_layer = pipeline.unet | |
# find the target layer | |
temp_name = layer_infos.pop(0) | |
while len(layer_infos) > -1: | |
try: | |
curr_layer = curr_layer.__getattr__(temp_name) | |
if len(layer_infos) > 0: | |
temp_name = layer_infos.pop(0) | |
elif len(layer_infos) == 0: | |
break | |
except Exception: | |
if len(temp_name) > 0: | |
temp_name += "_" + layer_infos.pop(0) | |
else: | |
temp_name = layer_infos.pop(0) | |
# get elements for this layer | |
weight_up = elems["lora_up.weight"].to(dtype) | |
weight_down = elems["lora_down.weight"].to(dtype) | |
alpha = elems["alpha"] | |
if alpha: | |
alpha = alpha.item() / weight_up.shape[1] | |
else: | |
alpha = 1.0 | |
# update weight | |
if len(weight_up.shape) == 4: | |
curr_layer.weight.data += ( | |
multiplier | |
* alpha | |
* torch.mm( | |
weight_up.squeeze(3).squeeze(2), | |
weight_down.squeeze(3).squeeze(2), | |
) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
) | |
else: | |
curr_layer.weight.data += ( | |
multiplier * alpha * torch.mm(weight_up, weight_down) | |
) | |
else: | |
for ckptpath in checkpoint_path: | |
state_dict = load_file(ckptpath, device=device) | |
updates = defaultdict(dict) | |
for key, value in state_dict.items(): | |
# it is suggested to print out the key, it usually will be something like below | |
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" | |
layer, elem = key.split(".", 1) | |
updates[layer][elem] = value | |
# directly update weight in diffusers model | |
for layer, elems in updates.items(): | |
if "text" in layer: | |
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split( | |
"_" | |
) | |
curr_layer = pipeline.text_encoder | |
else: | |
layer_infos = layer.split( | |
LORA_PREFIX_UNET + "_")[-1].split("_") | |
curr_layer = pipeline.unet | |
# find the target layer | |
temp_name = layer_infos.pop(0) | |
while len(layer_infos) > -1: | |
try: | |
curr_layer = curr_layer.__getattr__(temp_name) | |
if len(layer_infos) > 0: | |
temp_name = layer_infos.pop(0) | |
elif len(layer_infos) == 0: | |
break | |
except Exception: | |
if len(temp_name) > 0: | |
temp_name += "_" + layer_infos.pop(0) | |
else: | |
temp_name = layer_infos.pop(0) | |
# get elements for this layer | |
weight_up = elems["lora_up.weight"].to(dtype) | |
weight_down = elems["lora_down.weight"].to(dtype) | |
alpha = elems["alpha"] | |
if alpha: | |
alpha = alpha.item() / weight_up.shape[1] | |
else: | |
alpha = 1.0 | |
# update weight | |
if len(weight_up.shape) == 4: | |
curr_layer.weight.data += ( | |
multiplier | |
* alpha | |
* torch.mm( | |
weight_up.squeeze(3).squeeze(2), | |
weight_down.squeeze(3).squeeze(2), | |
) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
) | |
else: | |
curr_layer.weight.data += ( | |
multiplier * alpha * torch.mm(weight_up, weight_down) | |
) | |
return pipeline | |
def make_inpaint_condition(image, image_mask): | |
image = image / 255.0 | |
assert ( | |
image.shape[0:1] == image_mask.shape[0:1] | |
), "image and image_mask must have the same image size" | |
image[image_mask > 128] = -1.0 # set as masked pixel | |
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |
def obtain_generation_model( | |
base_model_path, | |
lora_model_path, | |
controlnet_path, | |
generation_only=False, | |
extra_inpaint=True, | |
lora_weight=1.0, | |
): | |
controlnet = [] | |
controlnet.append( | |
ControlNetModel2.from_pretrained( | |
controlnet_path, torch_dtype=torch.float16) | |
) # sam control | |
if (not generation_only) and extra_inpaint: # inpainting control | |
print("Warning: ControlNet based inpainting model only support SD1.5 for now.") | |
controlnet.append( | |
ControlNetModel.from_pretrained( | |
"lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16 | |
) # inpainting controlnet | |
) | |
if generation_only and extra_inpaint: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
else: | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
if lora_model_path is not None: | |
pipe = load_lora_weights( | |
pipe, [lora_model_path], lora_weight, "cpu", torch.float32 | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_model_cpu_offload() | |
return pipe | |
def obtain_tile_model(base_model_path, lora_model_path, lora_weight=1.0): | |
controlnet = ControlNetModel2.from_pretrained( | |
"lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16 | |
) # tile controlnet | |
if ( | |
base_model_path == "runwayml/stable-diffusion-v1-5" | |
or base_model_path == "stabilityai/stable-diffusion-2-inpainting" | |
): | |
print("base_model_path", base_model_path) | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
else: | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
if lora_model_path is not None: | |
pipe = load_lora_weights( | |
pipe, [lora_model_path], lora_weight, "cpu", torch.float32 | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_model_cpu_offload() | |
return pipe | |
def show_anns(anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True) | |
full_img = None | |
# for ann in sorted_anns: | |
for i in range(len(sorted_anns)): | |
ann = anns[i] | |
m = ann["segmentation"] | |
if full_img is None: | |
full_img = np.zeros((m.shape[0], m.shape[1], 3)) | |
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16) | |
map[m != 0] = i + 1 | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
full_img[m != 0] = color_mask | |
full_img = full_img * 255 | |
# anno encoding from https://github.com/LUSSeg/ImageNet-S | |
res = np.zeros((map.shape[0], map.shape[1], 3)) | |
res[:, :, 0] = map % 256 | |
res[:, :, 1] = map // 256 | |
res.astype(np.float32) | |
full_img = Image.fromarray(np.uint8(full_img)) | |
return full_img, res | |
class EditAnythingLoraModel: | |
def __init__( | |
self, | |
base_model_path="../chilloutmix_NiPrunedFp32Fix", | |
lora_model_path="../40806/mix4", | |
use_blip=True, | |
blip_processor=None, | |
blip_model=None, | |
sam_generator=None, | |
controlmodel_name="LAION Pretrained(v0-4)-SD15", | |
# used when the base model is not an inpainting model. | |
extra_inpaint=True, | |
tile_model=None, | |
lora_weight=1.0, | |
alpha_mixing=None, | |
mask_predictor=None, | |
): | |
self.device = device | |
self.use_blip = use_blip | |
# Diffusion init using diffusers. | |
self.default_controlnet_path = config_dict[controlmodel_name] | |
self.base_model_path = base_model_path | |
self.lora_model_path = lora_model_path | |
self.defalut_enable_all_generate = False | |
self.extra_inpaint = extra_inpaint | |
self.last_ref_infer = False | |
self.pipe = obtain_generation_model( | |
base_model_path, | |
lora_model_path, | |
self.default_controlnet_path, | |
generation_only=False, | |
extra_inpaint=extra_inpaint, | |
lora_weight=lora_weight, | |
) | |
# self.pipe.load_textual_inversion("textual_inversion_cat/learned_embeds.bin") | |
# Segment-Anything init. | |
self.sam_generator, self.mask_predictor = init_sam_model( | |
sam_generator, mask_predictor | |
) | |
# BLIP2 init. | |
if use_blip: | |
if blip_processor is not None: | |
self.blip_processor = blip_processor | |
else: | |
self.blip_processor = init_blip_processor() | |
if blip_model is not None: | |
self.blip_model = blip_model | |
else: | |
self.blip_model = init_blip_model() | |
# tile model init. | |
if tile_model is not None: | |
self.tile_pipe = tile_model | |
else: | |
self.tile_pipe = obtain_tile_model( | |
base_model_path, lora_model_path, lora_weight=lora_weight | |
) | |
def get_blip2_text(self, image): | |
inputs = self.blip_processor(image, return_tensors="pt").to( | |
self.device, torch.float16 | |
) | |
generated_ids = self.blip_model.generate(**inputs, max_new_tokens=50) | |
generated_text = self.blip_processor.batch_decode( | |
generated_ids, skip_special_tokens=True | |
)[0].strip() | |
return generated_text | |
def get_sam_control(self, image): | |
masks = self.sam_generator.generate(image) | |
full_img, res = show_anns(masks) | |
return full_img, res | |
def get_click_mask(self, image, clicked_points): | |
self.mask_predictor.set_image(image) | |
# Separate the points and labels | |
points, labels = zip(*[(point[:2], point[2]) | |
for point in clicked_points]) | |
# Convert the points and labels to numpy arrays | |
input_point = np.array(points) | |
input_label = np.array(labels) | |
masks, _, _ = self.mask_predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
return masks | |
def process_image_click( | |
self, | |
original_image: gr.Image, | |
point_prompt: gr.Radio, | |
clicked_points: gr.State, | |
image_resolution, | |
evt: gr.SelectData, | |
): | |
# Get the clicked coordinates | |
clicked_coords = evt.index | |
x, y = clicked_coords | |
label = point_prompt | |
lab = 1 if label == "Foreground Point" else 0 | |
clicked_points.append((x, y, lab)) | |
input_image = np.array(original_image, dtype=np.uint8) | |
H, W, C = input_image.shape | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
# Update the clicked_points | |
resized_points = resize_points( | |
clicked_points, input_image.shape, image_resolution | |
) | |
mask_click_np = self.get_click_mask(img, resized_points) | |
# Convert mask_click_np to HWC format | |
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0 | |
mask_image = HWC3(mask_click_np.astype(np.uint8)) | |
mask_image = cv2.resize( | |
mask_image, (W, H), interpolation=cv2.INTER_LINEAR) | |
# mask_image = Image.fromarray(mask_image_tmp) | |
# Draw circles for all clicked points | |
edited_image = input_image | |
for x, y, lab in clicked_points: | |
# Set the circle color based on the label | |
color = (255, 0, 0) if lab == 1 else (0, 0, 255) | |
# Draw the circle | |
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1) | |
# Set the opacity for the mask_image and edited_image | |
opacity_mask = 0.75 | |
opacity_edited = 1.0 | |
# Combine the edited_image and the mask_image using cv2.addWeighted() | |
overlay_image = cv2.addWeighted( | |
edited_image, | |
opacity_edited, | |
(mask_image * | |
np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8), | |
opacity_mask, | |
0, | |
) | |
return ( | |
Image.fromarray(overlay_image), | |
clicked_points, | |
Image.fromarray(mask_image), | |
) | |
# for debug use | |
def process( | |
self, | |
source_image, | |
enable_all_generate, | |
mask_image, | |
control_scale, | |
enable_auto_prompt, | |
a_prompt, | |
n_prompt, | |
num_samples, | |
image_resolution, | |
detect_resolution, | |
ddim_steps, | |
guess_mode, | |
scale, | |
seed, | |
eta, | |
enable_tile=True, | |
refine_alignment_ratio=None, | |
refine_image_resolution=None, | |
alpha_weight=0.5, | |
use_scale_map=False, | |
condition_model=None, | |
ref_image=None, | |
attention_auto_machine_weight=1.0, | |
gn_auto_machine_weight=1.0, | |
style_fidelity=0.5, | |
reference_attn=True, | |
reference_adain=True, | |
ref_prompt=None, | |
ref_sam_scale=None, | |
ref_inpaint_scale=None, | |
ref_auto_prompt=False, | |
ref_textinv=True, | |
ref_textinv_path=None, | |
ref_scale=None, | |
): | |
if condition_model is None or condition_model == "EditAnything": | |
this_controlnet_path = self.default_controlnet_path | |
else: | |
this_controlnet_path = condition_model | |
input_image = ( | |
source_image["image"] | |
if isinstance(source_image, dict) | |
else np.array(source_image, dtype=np.uint8) | |
) | |
if mask_image is None: | |
if enable_all_generate != self.defalut_enable_all_generate: | |
self.pipe = obtain_generation_model( | |
self.base_model_path, | |
self.lora_model_path, | |
this_controlnet_path, | |
enable_all_generate, | |
self.extra_inpaint, | |
) | |
self.defalut_enable_all_generate = enable_all_generate | |
if enable_all_generate: | |
mask_image = ( | |
np.ones((input_image.shape[0], | |
input_image.shape[1], 3)) * 255 | |
) | |
else: | |
mask_image = source_image["mask"] | |
else: | |
mask_image = np.array(mask_image, dtype=np.uint8) | |
if self.default_controlnet_path != this_controlnet_path: | |
print( | |
"To Use:", | |
this_controlnet_path, | |
"Current:", | |
self.default_controlnet_path, | |
) | |
print("Change condition model to:", this_controlnet_path) | |
self.pipe = obtain_generation_model( | |
self.base_model_path, | |
self.lora_model_path, | |
this_controlnet_path, | |
enable_all_generate, | |
self.extra_inpaint, | |
) | |
self.default_controlnet_path = this_controlnet_path | |
torch.cuda.empty_cache() | |
if self.last_ref_infer: | |
print("Redefine the model to overwrite the ref mode") | |
self.pipe = obtain_generation_model( | |
self.base_model_path, | |
self.lora_model_path, | |
this_controlnet_path, | |
enable_all_generate, | |
self.extra_inpaint, | |
) | |
self.last_ref_infer = False | |
if ref_image is not None: | |
ref_mask = ref_image["mask"] | |
ref_image = ref_image["image"] | |
if ref_auto_prompt or ref_textinv: | |
bbox = get_bounding_box( | |
np.array(ref_mask) / 255 | |
) # reverse the mask to make 1 the choosen region | |
cropped_ref_mask = ref_mask.crop( | |
(bbox[0], bbox[1], bbox[2], bbox[3])) | |
cropped_ref_image = ref_image.crop( | |
(bbox[0], bbox[1], bbox[2], bbox[3])) | |
# cropped_ref_image.save("debug.jpg") | |
cropped_ref_image = np.array(cropped_ref_image) * ( | |
np.array(cropped_ref_mask)[:, :, :3] / 255.0 | |
) | |
cropped_ref_image = Image.fromarray( | |
cropped_ref_image.astype("uint8")) | |
if ref_auto_prompt: | |
generated_prompt = self.get_blip2_text(cropped_ref_image) | |
ref_prompt += generated_prompt | |
a_prompt += generated_prompt | |
print("Generated ref text:", ref_prompt) | |
print("Generated input text:", a_prompt) | |
self.last_ref_infer = True | |
# ref_image = cropped_ref_image | |
# ref_mask = cropped_ref_mask | |
if ref_textinv: | |
try: | |
self.pipe.load_textual_inversion(ref_textinv_path) | |
print("Load textinv embedding from:", ref_textinv_path) | |
except: | |
print("No textinvert embeddings found.") | |
ref_data_path = "./utils/tmp/textinv/img" | |
if not os.path.exists(ref_data_path): | |
os.makedirs(ref_data_path) | |
cropped_ref_image.save( | |
os.path.join(ref_data_path, 'ref.png')) | |
print("Ref image region is save to:", ref_data_path) | |
print( | |
"Plese finetune with run_texutal_inversion.sh in utils folder to get the textinvert embeddings.") | |
else: | |
ref_mask = None | |
with torch.no_grad(): | |
if self.use_blip and enable_auto_prompt: | |
print("Generating text:") | |
blip2_prompt = self.get_blip2_text(input_image) | |
print("Generated text:", blip2_prompt) | |
if len(a_prompt) > 0: | |
a_prompt = blip2_prompt + "," + a_prompt | |
else: | |
a_prompt = blip2_prompt | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
print("Generating SAM seg:") | |
# the default SAM model is trained with 1024 size. | |
full_segmask, detected_map = self.get_sam_control( | |
resize_image(input_image, detect_resolution) | |
) | |
detected_map = HWC3(detected_map.astype(np.uint8)) | |
detected_map = cv2.resize( | |
detected_map, (W, H), interpolation=cv2.INTER_LINEAR | |
) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() | |
control = control.unsqueeze(dim=0) | |
control = einops.rearrange(control, "b h w c -> b c h w").clone() | |
mask_imag_ori = HWC3(mask_image.astype(np.uint8)) | |
mask_image_tmp = cv2.resize( | |
mask_imag_ori, (W, H), interpolation=cv2.INTER_LINEAR | |
) | |
mask_image = Image.fromarray(mask_image_tmp) | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
generator = torch.manual_seed(seed) | |
postive_prompt = a_prompt | |
negative_prompt = n_prompt | |
prompt_embeds, negative_prompt_embeds = get_pipeline_embeds( | |
self.pipe, postive_prompt, negative_prompt, "cuda" | |
) | |
if enable_all_generate and self.extra_inpaint: | |
if ref_image is not None: | |
print("Not support yet.") | |
return | |
x_samples = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
height=H, | |
width=W, | |
image=[control.type(torch.float16)], | |
controlnet_conditioning_scale=[float(control_scale)], | |
guidance_scale=scale, | |
guess_mode=guess_mode, | |
).images | |
else: | |
multi_condition_image = [] | |
multi_condition_scale = [] | |
multi_condition_image.append(control.type(torch.float16)) | |
multi_condition_scale.append(float(control_scale)) | |
ref_multi_condition_scale = [] | |
if ref_image is not None: | |
ref_multi_condition_scale.append(float(ref_sam_scale)) | |
if self.extra_inpaint: | |
inpaint_image = make_inpaint_condition(img, mask_image_tmp) | |
multi_condition_image.append( | |
inpaint_image.type(torch.float16)) | |
multi_condition_scale.append(1.0) | |
if ref_image is not None: | |
ref_multi_condition_scale.append( | |
float(ref_inpaint_scale)) | |
if use_scale_map: | |
scale_map_tmp = source_image["mask"] | |
tmp = HWC3(scale_map_tmp.astype(np.uint8)) | |
scale_map_tmp = cv2.resize( | |
tmp, (W, H), interpolation=cv2.INTER_LINEAR) | |
scale_map_tmp = Image.fromarray(scale_map_tmp) | |
controlnet_conditioning_scale_map = 1.0 - \ | |
prepare_mask_image(scale_map_tmp).float() | |
print('scale map:', controlnet_conditioning_scale_map.size()) | |
else: | |
controlnet_conditioning_scale_map = None | |
if isinstance(self.pipe, StableDiffusionControlNetInpaintMixingPipeline): | |
x_samples = self.pipe( | |
image=img, | |
mask_image=mask_image, | |
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
controlnet_conditioning_image=multi_condition_image, | |
height=H, | |
width=W, | |
controlnet_conditioning_scale=multi_condition_scale, | |
guidance_scale=scale, | |
alpha_weight=alpha_weight, | |
controlnet_conditioning_scale_map=controlnet_conditioning_scale_map | |
).images | |
else: | |
x_samples = self.pipe( | |
image=img, | |
mask_image=mask_image, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
controlnet_conditioning_image=multi_condition_image, | |
height=H, | |
width=W, | |
controlnet_conditioning_scale=multi_condition_scale, | |
guidance_scale=scale, | |
ref_image=ref_image, | |
ref_mask=ref_mask, | |
ref_prompt=ref_prompt, | |
attention_auto_machine_weight=attention_auto_machine_weight, | |
gn_auto_machine_weight=gn_auto_machine_weight, | |
style_fidelity=style_fidelity, | |
reference_attn=reference_attn, | |
reference_adain=reference_adain, | |
ref_controlnet_conditioning_scale=ref_multi_condition_scale, | |
guess_mode=guess_mode, | |
ref_scale=ref_scale, | |
).images | |
results = [x_samples[i] for i in range(num_samples)] | |
results_tile = [] | |
if enable_tile: | |
prompt_embeds, negative_prompt_embeds = get_pipeline_embeds( | |
self.tile_pipe, postive_prompt, negative_prompt, "cuda" | |
) | |
for i in range(num_samples): | |
img_tile = PIL.Image.fromarray( | |
resize_image( | |
np.array(x_samples[i]), refine_image_resolution) | |
) | |
if i == 0: | |
mask_image_tile = cv2.resize( | |
mask_imag_ori, | |
(img_tile.size[0], img_tile.size[1]), | |
interpolation=cv2.INTER_LINEAR, | |
) | |
mask_image_tile = Image.fromarray(mask_image_tile) | |
if isinstance(self.pipe, StableDiffusionControlNetInpaintMixingPipeline): | |
x_samples_tile = self.tile_pipe( | |
image=img_tile, | |
mask_image=mask_image_tile, | |
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, | |
num_images_per_prompt=1, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
controlnet_conditioning_image=img_tile, | |
height=img_tile.size[1], | |
width=img_tile.size[0], | |
controlnet_conditioning_scale=1.0, | |
alignment_ratio=refine_alignment_ratio, | |
guidance_scale=scale, | |
alpha_weight=alpha_weight, | |
controlnet_conditioning_scale_map=controlnet_conditioning_scale_map | |
).images | |
else: | |
x_samples_tile = self.tile_pipe( | |
image=img_tile, | |
mask_image=mask_image_tile, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
num_images_per_prompt=1, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
controlnet_conditioning_image=img_tile, | |
height=img_tile.size[1], | |
width=img_tile.size[0], | |
controlnet_conditioning_scale=1.0, | |
alignment_ratio=refine_alignment_ratio, | |
guidance_scale=scale, | |
guess_mode=guess_mode, | |
).images | |
results_tile += x_samples_tile | |
return results_tile, results, [full_segmask, mask_image], postive_prompt | |
def download_image(url): | |
response = requests.get(url) | |
return Image.open(BytesIO(response.content)).convert("RGB") | |