Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,8 @@ import subprocess
|
|
5 |
import gradio as gr
|
6 |
import uuid
|
7 |
import os
|
8 |
-
import logging
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
-
# Set up logging
|
12 |
-
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
-
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
@@ -35,7 +30,6 @@ def get_voices():
|
|
35 |
]
|
36 |
|
37 |
def text_to_speech(voice, text, session_id):
|
38 |
-
logger.info(f"Starting text-to-speech conversion for session {session_id}")
|
39 |
url = "https://api.openai.com/v1/audio/speech"
|
40 |
|
41 |
headers = {
|
@@ -49,34 +43,27 @@ def text_to_speech(voice, text, session_id):
|
|
49 |
"voice": voice
|
50 |
}
|
51 |
|
52 |
-
logger.debug(f"Sending request to OpenAI TTS API for session {session_id}")
|
53 |
response = requests.post(url, json=data, headers=headers)
|
54 |
if response.status_code != 200:
|
55 |
-
logger.error(f"Failed to generate speech audio for session {session_id}. Status code: {response.status_code}")
|
56 |
return None
|
57 |
|
58 |
# Save temporary audio file with session ID
|
59 |
audio_file_path = f'tempvoice{session_id}.mp3'
|
60 |
with open(audio_file_path, 'wb') as audio_file:
|
61 |
audio_file.write(response.content)
|
62 |
-
logger.info(f"Audio file saved: {audio_file_path}")
|
63 |
return audio_file_path
|
64 |
|
65 |
def upload_file(file_path):
|
66 |
-
logger.info(f"Uploading file: {file_path}")
|
67 |
with open(file_path, 'rb') as file:
|
68 |
files = {'fileToUpload': (os.path.basename(file_path), file)}
|
69 |
data = {'reqtype': 'fileupload'}
|
70 |
response = requests.post(UPLOAD_URL, files=files, data=data)
|
71 |
|
72 |
if response.status_code == 200:
|
73 |
-
logger.info(f"File uploaded successfully: {file_path}")
|
74 |
return response.text.strip()
|
75 |
-
logger.error(f"Failed to upload file: {file_path}. Status code: {response.status_code}")
|
76 |
return None
|
77 |
|
78 |
def lipsync_api_call(video_url, audio_url):
|
79 |
-
logger.info(f"Initiating lip-sync API call with video: {video_url} and audio: {audio_url}")
|
80 |
headers = {
|
81 |
"Authorization": f"Bearer {REPLICATE_API_TOKEN}",
|
82 |
"Content-Type": "application/json",
|
@@ -91,50 +78,38 @@ def lipsync_api_call(video_url, audio_url):
|
|
91 |
}
|
92 |
}
|
93 |
|
94 |
-
logger.debug(f"Sending request to Replicate API with data: {json.dumps(data)}")
|
95 |
response = requests.post(REPLICATE_API_URL, headers=headers, json=data)
|
96 |
-
logger.debug(f"Received response from Replicate API: {response.text}")
|
97 |
return response.json()
|
98 |
|
99 |
def check_job_status(prediction_id):
|
100 |
-
logger.info(f"Checking job status for prediction ID: {prediction_id}")
|
101 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}"}
|
102 |
max_attempts = 30 # Limit the number of attempts
|
103 |
|
104 |
-
for
|
105 |
-
logger.debug(f"Attempt {attempt + 1} to check job status")
|
106 |
response = requests.get(f"{REPLICATE_API_URL}/{prediction_id}", headers=headers)
|
107 |
data = response.json()
|
108 |
-
logger.debug(f"Job status response: {json.dumps(data)}")
|
109 |
|
110 |
if data["status"] == "succeeded":
|
111 |
-
logger.info(f"Job completed successfully for prediction ID: {prediction_id}")
|
112 |
return data["output"]
|
113 |
elif data["status"] == "failed":
|
114 |
-
logger.error(f"Job failed for prediction ID: {prediction_id}")
|
115 |
return None
|
116 |
|
117 |
-
logger.info(f"Job still in progress. Waiting for 10 seconds before next check.")
|
118 |
time.sleep(10)
|
119 |
-
|
120 |
-
logger.warning(f"Max attempts reached for prediction ID: {prediction_id}")
|
121 |
return None
|
122 |
|
123 |
def get_media_duration(file_path):
|
124 |
-
|
125 |
cmd = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', file_path]
|
126 |
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
127 |
-
|
128 |
-
logger.info(f"Media duration: {duration} seconds")
|
129 |
-
return duration
|
130 |
|
131 |
def combine_audio_video(video_path, audio_path, output_path):
|
132 |
-
|
133 |
video_duration = get_media_duration(video_path)
|
134 |
audio_duration = get_media_duration(audio_path)
|
135 |
|
136 |
if video_duration > audio_duration:
|
137 |
-
|
138 |
cmd = [
|
139 |
'ffmpeg', '-i', video_path, '-i', audio_path,
|
140 |
'-t', str(audio_duration), # Trim video to audio duration
|
@@ -143,60 +118,53 @@ def combine_audio_video(video_path, audio_path, output_path):
|
|
143 |
'-y', output_path
|
144 |
]
|
145 |
else:
|
146 |
-
|
147 |
-
loop_count = int(audio_duration // video_duration) + 1
|
148 |
cmd = [
|
149 |
'ffmpeg', '-stream_loop', str(loop_count), '-i', video_path, '-i', audio_path,
|
150 |
-
'-t', str(audio_duration),
|
151 |
'-map', '0:v', '-map', '1:a',
|
152 |
'-c:v', 'copy', '-c:a', 'aac',
|
153 |
'-shortest', '-y', output_path
|
154 |
]
|
155 |
|
156 |
-
logger.debug(f"Running ffmpeg command: {' '.join(cmd)}")
|
157 |
subprocess.run(cmd, check=True)
|
158 |
-
logger.info(f"Audio and video combined successfully: {output_path}")
|
159 |
|
160 |
def create_video_from_image(image_url, session_id):
|
161 |
-
|
162 |
response = requests.get(image_url)
|
163 |
image_path = f"tempimage{session_id}.jpg"
|
164 |
with open(image_path, "wb") as f:
|
165 |
f.write(response.content)
|
166 |
-
logger.info(f"Image downloaded: {image_path}")
|
167 |
|
|
|
168 |
video_path = f"tempvideo{session_id}.mp4"
|
169 |
cmd = [
|
170 |
'ffmpeg', '-loop', '1', '-i', image_path,
|
171 |
-
'-vf', 'scale=trunc(iw/2)*2:trunc(ih/2)*2',
|
172 |
'-c:v', 'libx264', '-t', '10', '-pix_fmt', 'yuv420p',
|
173 |
video_path
|
174 |
]
|
175 |
-
logger.debug(f"Running ffmpeg command: {' '.join(cmd)}")
|
176 |
subprocess.run(cmd, check=True)
|
177 |
-
logger.info(f"Video created from image: {video_path}")
|
178 |
|
|
|
179 |
os.remove(image_path)
|
180 |
-
logger.info(f"Temporary image file removed: {image_path}")
|
181 |
|
182 |
return video_path
|
183 |
|
184 |
def process_video(voice, url, text, progress=gr.Progress()):
|
185 |
-
session_id = str(uuid.uuid4())
|
186 |
-
logger.info(f"Starting video processing for session {session_id}")
|
187 |
progress(0, desc="Generating speech...")
|
188 |
audio_path = text_to_speech(voice, text, session_id)
|
189 |
if not audio_path:
|
190 |
-
logger.error(f"Failed to generate speech audio for session {session_id}")
|
191 |
return None, "Failed to generate speech audio."
|
192 |
|
193 |
progress(0.2, desc="Processing media...")
|
194 |
|
195 |
try:
|
196 |
-
|
197 |
response = requests.head(url)
|
198 |
content_type = response.headers.get('Content-Type', '')
|
199 |
-
logger.info(f"Content type of URL: {content_type}")
|
200 |
|
201 |
if content_type.startswith('image'):
|
202 |
progress(0.3, desc="Converting image to video...")
|
@@ -205,49 +173,42 @@ def process_video(voice, url, text, progress=gr.Progress()):
|
|
205 |
else:
|
206 |
video_url = url
|
207 |
|
208 |
-
logger.info(f"Video URL: {video_url}")
|
209 |
progress(0.4, desc="Uploading audio...")
|
210 |
audio_url = upload_file(audio_path)
|
211 |
-
logger.info(f"Audio URL: {audio_url}")
|
212 |
|
213 |
if not audio_url or not video_url:
|
214 |
raise Exception("Failed to upload audio or video file")
|
215 |
|
216 |
progress(0.5, desc="Initiating lipsync...")
|
217 |
job_data = lipsync_api_call(video_url, audio_url)
|
218 |
-
logger.info(f"Lipsync job data: {json.dumps(job_data)}")
|
219 |
|
220 |
if "error" in job_data:
|
221 |
raise Exception(job_data.get("error", "Unknown error"))
|
222 |
|
223 |
prediction_id = job_data["id"]
|
224 |
-
logger.info(f"Lipsync prediction ID: {prediction_id}")
|
225 |
|
226 |
progress(0.6, desc="Processing lipsync...")
|
227 |
result_url = check_job_status(prediction_id)
|
228 |
|
229 |
if result_url:
|
230 |
-
logger.info(f"Lipsync result URL: {result_url}")
|
231 |
progress(0.9, desc="Downloading result...")
|
232 |
response = requests.get(result_url)
|
233 |
output_path = f"output{session_id}.mp4"
|
234 |
-
with open(output_path,
|
235 |
f.write(response.content)
|
236 |
-
logger.info(f"Lipsync result saved to: {output_path}")
|
237 |
progress(1.0, desc="Complete!")
|
238 |
return output_path, "Lipsync completed successfully!"
|
239 |
else:
|
240 |
raise Exception("Lipsync processing failed or timed out")
|
241 |
|
242 |
except Exception as e:
|
243 |
-
logger.error(f"Error during lipsync process: {str(e)}")
|
244 |
progress(0.8, desc="Falling back to simple combination...")
|
245 |
try:
|
246 |
if 'video_path' not in locals():
|
247 |
-
|
248 |
video_response = requests.get(video_url)
|
249 |
video_path = f"tempvideo{session_id}.mp4"
|
250 |
-
with open(video_path,
|
251 |
f.write(video_response.content)
|
252 |
|
253 |
output_path = f"output{session_id}.mp4"
|
@@ -255,16 +216,13 @@ def process_video(voice, url, text, progress=gr.Progress()):
|
|
255 |
progress(1.0, desc="Complete!")
|
256 |
return output_path, f"Used fallback method. Original error: {str(e)}"
|
257 |
except Exception as fallback_error:
|
258 |
-
logger.error(f"Fallback method failed: {str(fallback_error)}")
|
259 |
return None, f"All methods failed. Error: {str(fallback_error)}"
|
260 |
finally:
|
261 |
# Cleanup
|
262 |
if os.path.exists(audio_path):
|
263 |
os.remove(audio_path)
|
264 |
-
logger.info(f"Removed temporary audio file: {audio_path}")
|
265 |
if os.path.exists(f"tempvideo{session_id}.mp4"):
|
266 |
os.remove(f"tempvideo{session_id}.mp4")
|
267 |
-
logger.info(f"Removed temporary video file: tempvideo{session_id}.mp4")
|
268 |
|
269 |
def create_interface():
|
270 |
voices = get_voices()
|
@@ -281,10 +239,8 @@ def create_interface():
|
|
281 |
video_output = gr.Video(label="Generated Video")
|
282 |
status_output = gr.Textbox(label="Status", interactive=False)
|
283 |
def on_generate(voice_name, url, text):
|
284 |
-
logger.info(f"Generation started with voice: {voice_name}, URL: {url}")
|
285 |
voice_id = next((v[1] for v in voices if v[0] == voice_name), None)
|
286 |
if not voice_id:
|
287 |
-
logger.error(f"Invalid voice selected: {voice_name}")
|
288 |
return None, "Invalid voice selected."
|
289 |
return process_video(voice_id, url, text)
|
290 |
generate_btn.click(
|
@@ -295,6 +251,5 @@ def create_interface():
|
|
295 |
return app
|
296 |
|
297 |
if __name__ == "__main__":
|
298 |
-
logger.info("Starting the application")
|
299 |
app = create_interface()
|
300 |
app.launch()
|
|
|
5 |
import gradio as gr
|
6 |
import uuid
|
7 |
import os
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
|
|
|
|
|
|
|
|
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
|
|
30 |
]
|
31 |
|
32 |
def text_to_speech(voice, text, session_id):
|
|
|
33 |
url = "https://api.openai.com/v1/audio/speech"
|
34 |
|
35 |
headers = {
|
|
|
43 |
"voice": voice
|
44 |
}
|
45 |
|
|
|
46 |
response = requests.post(url, json=data, headers=headers)
|
47 |
if response.status_code != 200:
|
|
|
48 |
return None
|
49 |
|
50 |
# Save temporary audio file with session ID
|
51 |
audio_file_path = f'tempvoice{session_id}.mp3'
|
52 |
with open(audio_file_path, 'wb') as audio_file:
|
53 |
audio_file.write(response.content)
|
|
|
54 |
return audio_file_path
|
55 |
|
56 |
def upload_file(file_path):
|
|
|
57 |
with open(file_path, 'rb') as file:
|
58 |
files = {'fileToUpload': (os.path.basename(file_path), file)}
|
59 |
data = {'reqtype': 'fileupload'}
|
60 |
response = requests.post(UPLOAD_URL, files=files, data=data)
|
61 |
|
62 |
if response.status_code == 200:
|
|
|
63 |
return response.text.strip()
|
|
|
64 |
return None
|
65 |
|
66 |
def lipsync_api_call(video_url, audio_url):
|
|
|
67 |
headers = {
|
68 |
"Authorization": f"Bearer {REPLICATE_API_TOKEN}",
|
69 |
"Content-Type": "application/json",
|
|
|
78 |
}
|
79 |
}
|
80 |
|
|
|
81 |
response = requests.post(REPLICATE_API_URL, headers=headers, json=data)
|
|
|
82 |
return response.json()
|
83 |
|
84 |
def check_job_status(prediction_id):
|
|
|
85 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}"}
|
86 |
max_attempts = 30 # Limit the number of attempts
|
87 |
|
88 |
+
for _ in range(max_attempts):
|
|
|
89 |
response = requests.get(f"{REPLICATE_API_URL}/{prediction_id}", headers=headers)
|
90 |
data = response.json()
|
|
|
91 |
|
92 |
if data["status"] == "succeeded":
|
|
|
93 |
return data["output"]
|
94 |
elif data["status"] == "failed":
|
|
|
95 |
return None
|
96 |
|
|
|
97 |
time.sleep(10)
|
|
|
|
|
98 |
return None
|
99 |
|
100 |
def get_media_duration(file_path):
|
101 |
+
# Fetch media duration using ffprobe
|
102 |
cmd = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', file_path]
|
103 |
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
104 |
+
return float(result.stdout.strip())
|
|
|
|
|
105 |
|
106 |
def combine_audio_video(video_path, audio_path, output_path):
|
107 |
+
# Get durations of both video and audio
|
108 |
video_duration = get_media_duration(video_path)
|
109 |
audio_duration = get_media_duration(audio_path)
|
110 |
|
111 |
if video_duration > audio_duration:
|
112 |
+
# Trim video to match the audio length
|
113 |
cmd = [
|
114 |
'ffmpeg', '-i', video_path, '-i', audio_path,
|
115 |
'-t', str(audio_duration), # Trim video to audio duration
|
|
|
118 |
'-y', output_path
|
119 |
]
|
120 |
else:
|
121 |
+
# Loop video if it's shorter than audio
|
122 |
+
loop_count = int(audio_duration // video_duration) + 1 # Calculate how many times to loop
|
123 |
cmd = [
|
124 |
'ffmpeg', '-stream_loop', str(loop_count), '-i', video_path, '-i', audio_path,
|
125 |
+
'-t', str(audio_duration), # Match the duration of the final video with the audio
|
126 |
'-map', '0:v', '-map', '1:a',
|
127 |
'-c:v', 'copy', '-c:a', 'aac',
|
128 |
'-shortest', '-y', output_path
|
129 |
]
|
130 |
|
|
|
131 |
subprocess.run(cmd, check=True)
|
|
|
132 |
|
133 |
def create_video_from_image(image_url, session_id):
|
134 |
+
# Download the image
|
135 |
response = requests.get(image_url)
|
136 |
image_path = f"tempimage{session_id}.jpg"
|
137 |
with open(image_path, "wb") as f:
|
138 |
f.write(response.content)
|
|
|
139 |
|
140 |
+
# Create a 10-second video from the image
|
141 |
video_path = f"tempvideo{session_id}.mp4"
|
142 |
cmd = [
|
143 |
'ffmpeg', '-loop', '1', '-i', image_path,
|
144 |
+
'-vf', 'scale=trunc(iw/2)*2:trunc(ih/2)*2', # Ensure width and height are divisible by 2
|
145 |
'-c:v', 'libx264', '-t', '10', '-pix_fmt', 'yuv420p',
|
146 |
video_path
|
147 |
]
|
|
|
148 |
subprocess.run(cmd, check=True)
|
|
|
149 |
|
150 |
+
# Clean up the temporary image file
|
151 |
os.remove(image_path)
|
|
|
152 |
|
153 |
return video_path
|
154 |
|
155 |
def process_video(voice, url, text, progress=gr.Progress()):
|
156 |
+
session_id = str(uuid.uuid4()) # Generate a unique session ID
|
|
|
157 |
progress(0, desc="Generating speech...")
|
158 |
audio_path = text_to_speech(voice, text, session_id)
|
159 |
if not audio_path:
|
|
|
160 |
return None, "Failed to generate speech audio."
|
161 |
|
162 |
progress(0.2, desc="Processing media...")
|
163 |
|
164 |
try:
|
165 |
+
# Check if the URL is an image
|
166 |
response = requests.head(url)
|
167 |
content_type = response.headers.get('Content-Type', '')
|
|
|
168 |
|
169 |
if content_type.startswith('image'):
|
170 |
progress(0.3, desc="Converting image to video...")
|
|
|
173 |
else:
|
174 |
video_url = url
|
175 |
|
|
|
176 |
progress(0.4, desc="Uploading audio...")
|
177 |
audio_url = upload_file(audio_path)
|
|
|
178 |
|
179 |
if not audio_url or not video_url:
|
180 |
raise Exception("Failed to upload audio or video file")
|
181 |
|
182 |
progress(0.5, desc="Initiating lipsync...")
|
183 |
job_data = lipsync_api_call(video_url, audio_url)
|
|
|
184 |
|
185 |
if "error" in job_data:
|
186 |
raise Exception(job_data.get("error", "Unknown error"))
|
187 |
|
188 |
prediction_id = job_data["id"]
|
|
|
189 |
|
190 |
progress(0.6, desc="Processing lipsync...")
|
191 |
result_url = check_job_status(prediction_id)
|
192 |
|
193 |
if result_url:
|
|
|
194 |
progress(0.9, desc="Downloading result...")
|
195 |
response = requests.get(result_url)
|
196 |
output_path = f"output{session_id}.mp4"
|
197 |
+
with open(output_path, "wb") as f:
|
198 |
f.write(response.content)
|
|
|
199 |
progress(1.0, desc="Complete!")
|
200 |
return output_path, "Lipsync completed successfully!"
|
201 |
else:
|
202 |
raise Exception("Lipsync processing failed or timed out")
|
203 |
|
204 |
except Exception as e:
|
|
|
205 |
progress(0.8, desc="Falling back to simple combination...")
|
206 |
try:
|
207 |
if 'video_path' not in locals():
|
208 |
+
# Download the video from the URL if it wasn't created from an image
|
209 |
video_response = requests.get(video_url)
|
210 |
video_path = f"tempvideo{session_id}.mp4"
|
211 |
+
with open(video_path, "wb") as f:
|
212 |
f.write(video_response.content)
|
213 |
|
214 |
output_path = f"output{session_id}.mp4"
|
|
|
216 |
progress(1.0, desc="Complete!")
|
217 |
return output_path, f"Used fallback method. Original error: {str(e)}"
|
218 |
except Exception as fallback_error:
|
|
|
219 |
return None, f"All methods failed. Error: {str(fallback_error)}"
|
220 |
finally:
|
221 |
# Cleanup
|
222 |
if os.path.exists(audio_path):
|
223 |
os.remove(audio_path)
|
|
|
224 |
if os.path.exists(f"tempvideo{session_id}.mp4"):
|
225 |
os.remove(f"tempvideo{session_id}.mp4")
|
|
|
226 |
|
227 |
def create_interface():
|
228 |
voices = get_voices()
|
|
|
239 |
video_output = gr.Video(label="Generated Video")
|
240 |
status_output = gr.Textbox(label="Status", interactive=False)
|
241 |
def on_generate(voice_name, url, text):
|
|
|
242 |
voice_id = next((v[1] for v in voices if v[0] == voice_name), None)
|
243 |
if not voice_id:
|
|
|
244 |
return None, "Invalid voice selected."
|
245 |
return process_video(voice_id, url, text)
|
246 |
generate_btn.click(
|
|
|
251 |
return app
|
252 |
|
253 |
if __name__ == "__main__":
|
|
|
254 |
app = create_interface()
|
255 |
app.launch()
|