back_rag_huggingface / model_data_json /Alibaba-NLP_gte-multilingual-reranker-base.json
shayan5422's picture
Upload 3710 files
21cad66 verified
{
"model_id": "Alibaba-NLP/gte-multilingual-reranker-base",
"downloads": 228024,
"tags": [
"sentence-transformers",
"safetensors",
"new",
"text-classification",
"transformers",
"text-embeddings-inference",
"text-ranking",
"custom_code",
"af",
"ar",
"az",
"be",
"bg",
"bn",
"ca",
"ceb",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"gl",
"gu",
"he",
"hi",
"hr",
"ht",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"ky",
"lo",
"lt",
"lv",
"mk",
"ml",
"mn",
"mr",
"ms",
"my",
"ne",
"nl",
"no",
"pa",
"pl",
"pt",
"qu",
"ro",
"ru",
"si",
"sk",
"sl",
"so",
"sq",
"sr",
"sv",
"sw",
"ta",
"te",
"th",
"tl",
"tr",
"uk",
"ur",
"vi",
"yo",
"zh",
"arxiv:2407.19669",
"license:apache-2.0",
"region:us"
],
"description": "--- license: apache-2.0 pipeline_tag: text-ranking tags: - transformers - sentence-transformers - text-embeddings-inference language: - af - ar - az - be - bg - bn - ca - ceb - cs - cy - da - de - el - en - es - et - eu - fa - fi - fr - gl - gu - he - hi - hr - ht - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ky - lo - lt - lv - mk - ml - mn - mr - ms - my - ne - nl - 'no' - pa - pl - pt - qu - ro - ru - si - sk - sl - so - sq - sr - sv - sw - ta - te - th - tl - tr - uk - ur - vi - yo - zh library_name: sentence-transformers --- ## gte-multilingual-reranker-base The **gte-multilingual-reranker-base** model is the first reranker model in the GTE family of models, featuring several key attributes: - **High Performance**: Achieves state-of-the-art (SOTA) results in multilingual retrieval tasks and multi-task representation model evaluations when compared to reranker models of similar size. - **Training Architecture**: Trained using an encoder-only transformers architecture, resulting in a smaller model size. Unlike previous models based on decode-only LLM architecture (e.g., gte-qwen2-1.5b-instruct), this model has lower hardware requirements for inference, offering a 10x increase in inference speed. - **Long Context**: Supports text lengths up to **8192** tokens. - **Multilingual Capability**: Supports over **70** languages. ## Model Information - Model Size: 306M - Max Input Tokens: 8192 ### Usage - **It is recommended to install xformers and enable unpadding for acceleration, refer to enable-unpadding-and-xformers.** - **How to use it offline: new-impl/discussions/2** Using Huggingface transformers (transformers>=4.36.0) Usage with infinity: Infinity, a MIT Licensed Inference RestAPI Server. ## Evaluation Results of reranking based on multiple text retreival datasets !image **More detailed experimental results can be found in the paper**. ## Cloud API Services In addition to the open-source GTE series models, GTE series models are also available as commercial API services on Alibaba Cloud. - Embedding Models: Three versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service. - ReRank Models: The gte-rerank model service is available. Note that the models behind the commercial APIs are not entirely identical to the open-source models. ## Citation If you find our paper or models helpful, please consider cite:",
"model_explanation_gemini": "\"Multilingual text reranker model supporting 70+ languages with high performance, long-context handling (8192 tokens), and faster inference compared to similar-sized models.\"\n\nFeatures: \n- Multilingual (70+ languages) \n- Encoder-only transformer architecture \n- 306M parameters \n- 8192-token context length \n- 10x faster inference than comparable models \n- State-of-the-art performance in multilingual retrieval \n\nComparison: \nOutperforms similar-sized reranker models in",
"release_year": "2024",
"parameter_count": null,
"is_fine_tuned": false,
"category": "Reranker",
"api_enhanced": true
}