back_rag_huggingface / model_data_json /AIDC-AI_Ovis2-4B.json
shayan5422's picture
Upload 3710 files
21cad66 verified
{
"model_id": "AIDC-AI/Ovis2-4B",
"downloads": 16331,
"tags": [
"transformers",
"safetensors",
"ovis",
"text-generation",
"MLLM",
"image-text-to-text",
"conversational",
"custom_code",
"en",
"zh",
"dataset:AIDC-AI/Ovis-dataset",
"arxiv:2405.20797",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
],
"description": "--- license: apache-2.0 datasets: - AIDC-AI/Ovis-dataset library_name: transformers tags: - MLLM pipeline_tag: image-text-to-text language: - en - zh --- # Ovis2-4B <div align=\"center\"> <img src= width=\"30%\"/> </div> ## Introduction GitHub | Paper We are pleased to announce the release of **Ovis2**, our latest advancement in multi-modal large language models (MLLMs). Ovis2 inherits the innovative architectural design of the Ovis series, aimed at structurally aligning visual and textual embeddings. As the successor to Ovis1.6, Ovis2 incorporates significant improvements in both dataset curation and training methodologies. **Key Features**: - **Small Model Performance**: Optimized training strategies enable small-scale models to achieve higher capability density, demonstrating cross-tier leading advantages. - **Enhanced Reasoning Capabilities**: Significantly strengthens Chain-of-Thought (CoT) reasoning abilities through the combination of instruction tuning and preference learning. - **Video and Multi-Image Processing**: Video and multi-image data are incorporated into training to enhance the ability to handle complex visual information across frames and images. - **Multilingual Support and OCR**: Enhances multilingual OCR beyond English and Chinese and improves structured data extraction from complex visual elements like tables and charts. <div align=\"center\"> <img src=\" width=\"100%\" /> </div> ## Model Zoo | Ovis MLLMs | ViT | LLM | Model Weights | Demo | |:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:| | Ovis2-1B | aimv2-large-patch14-448 | Qwen2.5-0.5B-Instruct | Huggingface | Space | | Ovis2-2B | aimv2-large-patch14-448 | Qwen2.5-1.5B-Instruct | Huggingface | Space | | Ovis2-4B | aimv2-huge-patch14-448 | Qwen2.5-3B-Instruct | Huggingface | Space | | Ovis2-8B | aimv2-huge-patch14-448 | Qwen2.5-7B-Instruct | Huggingface | Space | | Ovis2-16B | aimv2-huge-patch14-448 | Qwen2.5-14B-Instruct | Huggingface | Space | | Ovis2-34B | aimv2-1B-patch14-448 | Qwen2.5-32B-Instruct | Huggingface | - | ## Performance We use VLMEvalKit, as employed in the OpenCompass multimodal and reasoning leaderboard, to evaluate Ovis2. !image/png ### Image Benchmark | Benchmark | Qwen2.5-VL-7B | InternVL2.5-8B-MPO | MiniCPM-o-2.6 | Ovis1.6-9B | InternVL2.5-4B-MPO | Ovis2-4B | Ovis2-8B | |:-----------------------------|:---------------:|:--------------------:|:---------------:|:------------:|:--------------------:|:----------:|:----------:| | MMBench-V1.1<sub>test</sub> | 82.6 | 82.0 | 80.6 | 80.5 | 77.8 | 81.4 | **83.6** | | MMStar | 64.1 | **65.2** | 63.3 | 62.9 | 61 | 61.9 | 64.6 | | MMMU<sub>val</sub> | 56.2 | 54.8 | 50.9 | 55 | 51.8 | 49.0 | **57.4** | | MathVista<sub>testmini</sub> | 65.8 | 67.9 | **73.3** | 67.3 | 64.1 | 69.6 | 71.8 | | HallusionBench | **56.3** | 51.7 | 51.1 | 52.2 | 47.5 | 53.8 | **56.3** | | AI2D | 84.1 | 84.5 | 86.1 | 84.4 | 81.5 | 85.7 | **86.6** | | OCRBench | 87.7 | 88.2 | 88.9 | 83 | 87.9 | **91.1** | 89.1 | | MMVet | 66.6 | **68.1** | 67.2 | 65 | 66 | 65.5 | 65.1 | | MMBench<sub>test</sub> | 83.4 | 83.2 | 83.2 | 82.7 | 79.6 | 83.2 | **84.9** | | MMT-Bench<sub>val</sub> | 62.7 | 62.5 | 62.3 | 64.9 | 61.6 | 65.2 | **66.6** | | RealWorldQA | 68.8 | 71.1 | 68.0 | 70.7 | 64.4 | 71.1 | **72.5** | | BLINK | 56.1 | **56.6** | 53.9 | 48.5 | 50.6 | 53.0 | 54.3 | | QBench | 77.9 | 73.8 | 78.7 | 76.7 | 71.5 | 78.1 | **78.9** | | ABench | 75.6 | 77.0 | **77.5** | 74.4 | 75.9 | **77.5** | 76.4 | | MTVQA | 28.5 | 27.2 | 23.1 | 19.2 | 28 | 29.4 | **29.7** | ### Video Benchmark | Benchmark | Qwen2.5-VL-7B | InternVL2.5-8B | LLaVA-OV-7B | InternVL2.5-4B | Ovis2-4B | Ovis2-8B | |:--------------------|:-------------:|:--------------:|:------------------:|:--------------:|:---------:|:-------------:| | VideoMME(wo/w-subs) | 65.1/71.6 | 64.2 / 66.9 | 58.2/61.5 | 62.3 / 63.6 | 64.0/66.3 | **68.0/71.6** | | MVBench | 69.6 | **72.0** | 56.7 | 71.6 | 68.45 | 68.15 | | MLVU(M-Avg/G-Avg) | 70.2/- | 68.9/- | 64.7/- | 68.3/- | 70.8/4.23 | **76.4**/4.25 | | MMBench-Video | 1.79 | 1.68 | - | 1.73 | 1.69 | **1.85** | | TempCompass | **71.7** | - | - | - | 67.02 | 69.28 | ## Usage Below is a code snippet demonstrating how to run Ovis with various input types. For additional usage instructions, including inference wrapper and Gradio UI, please refer to Ovis GitHub. <details> <summary>Batch Inference</summary> </details> ## Citation If you find Ovis useful, please consider citing the paper ## License This project is licensed under the Apache License, Version 2.0 (SPDX-License-Identifier: Apache-2.0). ## Disclaimer We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.",
"model_explanation_gemini": "\"AIDC-AI_Ovis2-4B is a multimodal large language model (MLLM) designed for image-text-to-text tasks, featuring enhanced reasoning, multilingual OCR, and video/multi-image processing capabilities.\"\n\n**Model Features**: \n- Optimized small-scale performance with high capability density \n- Strengthened Chain-of-Thought (CoT) reasoning \n- Video and multi-image processing support \n- Multilingual OCR (English/Chinese) and structured data extraction \n\n**Comparison**:",
"release_year": "2024",
"parameter_count": "4B",
"is_fine_tuned": false,
"category": "Multimodal",
"api_enhanced": true
}