Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
from transformers import pipeline
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from info import pneumonia, covid19, vit_base_patch_16
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
URL = 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTcY7VeTAy72aEPJbHmABvnGzW5gzrvSKRzOg&usqp=CAU'
|
14 |
+
|
15 |
+
|
16 |
+
def download_image():
|
17 |
+
if st.session_state.img_url:
|
18 |
+
st.session_state['image'] = Image.open(
|
19 |
+
requests.get(st.session_state.img_url, stream=True).raw)
|
20 |
+
else:
|
21 |
+
del st.session_state['image']
|
22 |
+
|
23 |
+
|
24 |
+
def file_upload():
|
25 |
+
if st.session_state.file_upload:
|
26 |
+
st.session_state['image'] = Image.open(st.session_state.file_upload)
|
27 |
+
else:
|
28 |
+
del st.session_state['image']
|
29 |
+
|
30 |
+
|
31 |
+
def cam_upload():
|
32 |
+
if st.session_state.camera:
|
33 |
+
st.session_state['image'] = st.session_state.camera
|
34 |
+
else:
|
35 |
+
del st.session_state['image']
|
36 |
+
|
37 |
+
|
38 |
+
if 'image' not in st.session_state:
|
39 |
+
st.session_state['image'] = Image.open(requests.get(URL, stream=True).raw)
|
40 |
+
|
41 |
+
st.header("Pneumonia and Covid19 Detector")
|
42 |
+
|
43 |
+
with st.sidebar:
|
44 |
+
img_upload, cam_upload, url_upload = st.tabs(
|
45 |
+
['π Upload', 'πΈ CAMERA', 'π URL'])
|
46 |
+
|
47 |
+
with img_upload:
|
48 |
+
uploaded_img = st.file_uploader(
|
49 |
+
label="Upload an X-ray image", on_change=file_upload, key='file_upload'
|
50 |
+
)
|
51 |
+
with cam_upload:
|
52 |
+
camera_img = st.camera_input(
|
53 |
+
label='Take a picture of X-ray', on_change=cam_upload, key='camera'
|
54 |
+
)
|
55 |
+
with url_upload:
|
56 |
+
img_url = st.text_input(
|
57 |
+
label="Enter the X-ray URL", value=URL, on_change=download_image, key="img_url"
|
58 |
+
)
|
59 |
+
|
60 |
+
st.image(st.session_state.image)
|
61 |
+
|
62 |
+
analyze_btn = st.button(label='Analyze X-ray', type='primary',
|
63 |
+
use_container_width=True, key='analyze_btn')
|
64 |
+
|
65 |
+
if st.session_state.image and st.session_state.analyze_btn:
|
66 |
+
with st.spinner():
|
67 |
+
pipe = pipeline("image-classification",
|
68 |
+
model="sharren/vit-beta2-0.99")
|
69 |
+
response = pipe(st.session_state.image)
|
70 |
+
|
71 |
+
df = pd.DataFrame(response)
|
72 |
+
result = df.nlargest(n=1, columns='score')
|
73 |
+
result_body = f'Model predicts : {result["label"].item()} with {result["score"].item()*100 :0.2f}% confidence'
|
74 |
+
|
75 |
+
with st.expander(label=result_body, expanded=True):
|
76 |
+
st.subheader(body=f':red[{result["label"].item()}] Detected')
|
77 |
+
st.bar_chart(data=df, x='label', y='score')
|
78 |
+
|
79 |
+
with st.expander(label="X-ray image analyzed"):
|
80 |
+
st.image(st.session_state.image)
|
81 |
+
|
82 |
+
with st.expander(label="Model Details"):
|
83 |
+
st.markdown(body=vit_base_patch_16)
|
84 |
+
|
85 |
+
else:
|
86 |
+
tab_1, tab_2 = st.tabs(['Pneumonia', 'Coronavirus'])
|
87 |
+
with tab_1:
|
88 |
+
st.subheader('Pneumonia')
|
89 |
+
st.markdown(body=pneumonia)
|
90 |
+
with tab_2:
|
91 |
+
st.subheader('Coronavirus')
|
92 |
+
st.markdown(body=covid19)
|
93 |
+
|
94 |
+
# import gradio as gr
|
95 |
+
# from transformers import pipeline
|
96 |
+
|
97 |
+
# pipe = pipeline("image-classification", "sharren/vit-beta2-0.99")
|
98 |
+
|
99 |
+
# def image_classifier(image):
|
100 |
+
# outputs = pipe(image)
|
101 |
+
# results = {}
|
102 |
+
# for result in outputs:
|
103 |
+
# results[result['label']] = result['score']
|
104 |
+
# return results
|
105 |
+
|
106 |
+
# title = "Skin Cancer ViT Classifier"
|
107 |
+
# description = """
|
108 |
+
# This application serves to classify skin lesion images based on their skin cancer type. Trained using Vision Transformer (ViT), it has achieved a validation accuracy of 86%.
|
109 |
+
# """
|
110 |
+
|
111 |
+
# demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label", title=title, description=description,
|
112 |
+
# examples = "./assets",
|
113 |
+
# theme = "gstaff/sketch")
|
114 |
+
# demo.launch(show_api=False)
|