sharren's picture
Update app.py
b1f560b verified
raw
history blame
3.51 kB
import streamlit as st
import pandas as pd
import requests
from dotenv import load_dotenv
from transformers import pipeline
from PIL import Image
from info import akiec, bcc, bkl, df, mel, nv, vasc, vit_base_patch_16
load_dotenv()
URL = 'https://i.stack.imgur.com/gPR77.jpg'
def download_image():
if st.session_state.img_url:
st.session_state['image'] = Image.open(
requests.get(st.session_state.img_url, stream=True).raw)
else:
del st.session_state['image']
def file_upload():
if st.session_state.file_upload:
st.session_state['image'] = Image.open(st.session_state.file_upload)
else:
del st.session_state['image']
def cam_upload():
if st.session_state.camera:
st.session_state['image'] = Image.open(st.session_state.camera)
else:
del st.session_state['image']
if 'image' not in st.session_state:
st.session_state['image'] = Image.open(requests.get(URL, stream=True).raw)
st.header("Skin Cancer Classifier")
with st.sidebar:
img_upload_tab, cam_upload_tab, url_upload_tab = st.tabs(
['πŸ“‚ Upload', 'πŸ“Έ CAMERA', 'πŸ”— URL'])
with img_upload_tab:
uploaded_img = st.file_uploader(
label="Upload a Skin Lesion", on_change=file_upload, key='file_upload'
)
with cam_upload_tab:
camera_img = st.camera_input(
label='Take a picture of a Skin Lesion', on_change=cam_upload, key='camera'
)
with url_upload_tab:
img_url = st.text_input(
label="Enter the Skin Lesion URL", value=URL, on_change=download_image, key="img_url"
)
if 'image' in st.session_state:
st.image(st.session_state['image'])
analyze_btn = st.button(label='Analyze Skin Lesion', type='primary', use_container_width=True, key='analyze_btn')
if 'image' in st.session_state and st.session_state['analyze_btn']:
with st.spinner("Analyzing..."):
pipe = pipeline("image-classification", model="sharren/vit-beta2-0.99")
response = pipe(st.session_state['image'])
df = pd.DataFrame(response)
result = df.nlargest(n=1, columns='score')
result_body = f'Model predicts: {result["label"].item()} with {result["score"].item()*100:.2f}% confidence'
with st.expander(label=result_body, expanded=True):
st.subheader(f':red[{result["label"].item()}] Detected')
st.bar_chart(data=df, x='label', y='score')
with st.expander(label="Skin lesion analyzed"):
st.image(st.session_state['image'])
with st.expander(label="Model Details"):
st.markdown(body=vit_base_patch_16)
else:
tab_1, tab_2, tab_3, tab_4, tab_5, tab_6, tab_7 = st.tabs([
'Actinic Keratoses', 'Basal Cell Carcinoma', 'Benign Keratosis', 'Dermatofibroma',
'Melanoma', 'Melanocytic Nevi', 'Vascular Lesion'
])
with tab_1:
st.subheader('Actinic Keratoses')
st.markdown(body=akiec)
with tab_2:
st.subheader('Basal Cell Carcinoma')
st.markdown(body=bcc)
with tab_3:
st.subheader('Benign Lesions of the Keratosis Type')
st.markdown(body=bkl)
with tab_4:
st.subheader('Dermatofibroma')
st.markdown(body=df)
with tab_5:
st.subheader('Melanoma')
st.markdown(body=mel)
with tab_6:
st.subheader('Melanocytic Nevi')
st.markdown(body=nv)
with tab_7:
st.subheader('Vascular Lesion')
st.markdown(body=vasc)