shangrilar's picture
Duplicate from shangrilar/cat_prediction
091be34
import os
import pickle
import torch
import random
import numpy as np
import pandas as pd
import gradio as gr
from setfit import SetFitModel
from huggingface_hub import login, hf_hub_download
hf_token = os.getenv('hf_token')
login(hf_token)
def prepare_setfit_model(repo_id):
model = SetFitModel.from_pretrained(repo_id)
id2cat_path = hf_hub_download(repo_id, filename='id2cat.pkl')
with open(id2cat_path, "rb") as file:
id2cat = pickle.load(file)
cat2id_path = hf_hub_download(repo_id, filename='cat2id.pkl')
with open(cat2id_path, "rb") as file:
cat2id = pickle.load(file)
cat_name_path = hf_hub_download(repo_id, filename='cat_name.csv')
df_cat = pd.read_csv(cat_name_path)
return model, id2cat, cat2id, df_cat
cat1_model, cat1_id2cat, cat1_cat2id, df_cat = prepare_setfit_model(os.getenv('cat1_repo_id'))
cat2_model, cat2_id2cat, cat2_cat2id, df_cat = prepare_setfit_model(os.getenv('cat2_repo_id'))
cid_model, cid_id2cat, cid_cat2id, df_cat = prepare_setfit_model(os.getenv('cid_repo_id'))
# -
def model_predict(model, sentence):
with torch.no_grad():
predict_result = model.predict_proba(sentence).cpu().detach().numpy()
sorted_ids = np.argsort(predict_result)[::-1]
sorted_probs = np.sort(predict_result)[::-1]
return sorted_ids, sorted_probs
# +
def run_prediction(sentence, state):
sorted_cat1_ids, sorted_cat1_probs = model_predict(cat1_model, sentence)
sorted_cat2_ids, sorted_cat2_probs = model_predict(cat2_model, sentence)
sorted_cid_ids, sorted_cid_probs = model_predict(cid_model, sentence)
sorted_cat1_ids = [cat1_id2cat[item] for item in sorted_cat1_ids]
sorted_cat2_ids = [cat2_id2cat[item] for item in sorted_cat2_ids]
sorted_cid_ids = [cid_id2cat[item] for item in sorted_cid_ids]
cat1_names = ['select'] + list(map(id2catname.get, sorted_cat1_ids))
cat2_names = ['select'] + list(map(id2catname.get, sorted_cat2_ids))
cid_names = ['select'] + list(map(id2catname.get, sorted_cid_ids))
state['cat1_names'] = cat1_names
state['sorted_cat1_probs'] = sorted_cat1_probs
state['cat2_names'] = cat2_names
state['sorted_cat2_probs'] = sorted_cat2_probs
state['cid_names'] = cid_names
state['sorted_cid_probs'] = sorted_cid_probs
return gr.Dropdown.update(
choices = cat1_names, value = cat1_names[0], interactive=True
), gr.Dropdown.update(
choices = cat2_names, value = cat2_names[0], interactive=True
), gr.Dropdown.update(
choices = cid_names, value = cid_names[0], interactive=True
), state
def filter_cat2(cat1_name, state):
cat2_names = []
cat2_list = parent_cat_map.get(cat1_name)
for item in state['cat2_names']:
if item in cat2_list and item not in cat2_names:
cat2_names.append(item)
cat2_names = ['select'] + cat2_names
return gr.Dropdown.update(
choices=cat2_names, value=cat2_names[0], interactive=True
), state
def filter_cid(cat2_name, state):
cid_names = []
cid_list = parent_cat_map.get(cat2_name)
if cid_list is None:
return gr.Dropdown.update(
choices=['None'], value='None', interactive=False
)
for item in state['cid_names']:
if item in cid_list and item not in cid_names:
cid_names.append(item)
cid_names = ['select'] + cid_names
return gr.Dropdown.update(
choices=cid_names, value=cid_names[0], interactive=True
)
# def predict_with_title_and_description(title, description):
# temp_list = list(locations.keys())
# random.shuffle(temp_list)
# countries = ['select'] + temp_list
# return gr.Dropdown.update(
# choices=countries, value=countries[0], interactive=True
# )
parent_cat = df_cat[['id', 'name']]
parent_cat.columns = ['temp_id', 'parent_name']
df_cat = pd.merge(df_cat, parent_cat, left_on='parent_id', right_on='temp_id', how='left').drop('temp_id', axis=1)
id2catname = {item['id']:item['name'] for item in df_cat[['id', 'name']].to_dict(orient='records')}
parent_cat_map = {}
for item in df_cat[['parent_name', 'name']].to_dict(orient='records'):
if item['parent_name'] in parent_cat_map:
parent_cat_map[item['parent_name']].append(item['name'])
else:
parent_cat_map[item['parent_name']] = [item['name']]
with gr.Blocks() as demo:
prediction_results = gr.State({})
with gr.Tab(label="Predict by title") as t1:
title = gr.Textbox(label='Service Title', placeholder='Please enter service title')
d1 = gr.Dropdown(choices = list(), label="Cat 1")
d2 = gr.Dropdown(choices = list(), label='Cat 2')
d3 = gr.Dropdown(choices = list(), label="CID")
b1 = gr.Button()
b1.click(run_prediction, [title, prediction_results], [d1, d2, d3, prediction_results])
d1.select(filter_cat2, [d1, prediction_results], [d2, prediction_results])
d2.select(filter_cid, [d2, prediction_results], d3)
# with gr.Tab(label="Predict by title and description") as t2:
# title = gr.Textbox(label='Service Title', placeholder='Please enter service title')
# description = gr.Textbox(label='Service Description', placeholder="Please enter service description")
# d1 = gr.Dropdown(choices = list(locations.keys()), label="Country")
# d2 = gr.Dropdown(choices = list(), label='State')
# d3 = gr.Dropdown(choices = list(), label="City")
# b1 = gr.Button()
# b1.click(predict_with_title_and_description, [title, description], d1)
# d1.change(filter_states, d1, d2)
# d2.change(filter_cities, [d1, d2], d3)
demo.queue(max_size=5).launch()