shangeth's picture
Create trainer.py
c8fbf2f verified
raw
history blame
2.66 kB
import torch
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model, PeftModel
import pytorch_lightning as pl
from model import HubertXCNNEnoder
class SpeechLLMLightning(pl.LightningModule):
def __init__(self, audio_enc_dim=512, llm_dim=2048, llm_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
super().__init__()
self.save_hyperparameters()
self.audio_enc_dim = audio_enc_dim
self.llm_dim = llm_dim
self.llm_name = llm_name
self.audio_encoder = HubertXCNNEnoder(self.audio_enc_dim, self.llm_dim)
self.llm_tokenizer = AutoTokenizer.from_pretrained(self.llm_name)
self.llm_tokenizer.pad_token = self.llm_tokenizer.eos_token
self.llm_model = AutoModelForCausalLM.from_pretrained(
self.llm_name,
device_map="auto",
)
peft_config = LoraConfig(
r=4,
lora_alpha=8,
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
lora_dropout=0.05,
task_type="CAUSAL_LM",
)
self.llm_model = get_peft_model(self.llm_model, peft_config)
self.llm_model.print_trainable_parameters()
for param in self.llm_model.parameters():
param.requires_grad = False
self.audio_encoder.eval()
self.llm_model.eval()
def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
batch_size = mel.shape[0]
speech_embeds = self.audio_encoder(mel)
embedder = self.llm_model.model.model.embed_tokens
pre_prompt_embeds = embedder(pre_tokenized_ids)
post_prompt_embeds = embedder(post_tokenized_ids)
output_prompt_embeds = embedder(output_tokenized_ids)
combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)
input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
label_ids = torch.cat([
torch.ones([batch_size, input_token_length], device=combined_embeds.device)*-100,
output_tokenized_ids
], 1).to(combined_embeds.device).to(torch.int64)
return combined_embeds, atts, label_ids
def forward(self, embeds, atts, label_ids):
return self.llm_model(
inputs_embeds=embeds,
attention_mask=atts,
labels=label_ids,
)