Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer, BlenderbotForConditionalGeneration | |
import torch | |
chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
def converse(user_input, chat_history=[]): | |
user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids | |
bot_input_ids = torch.cat([torch.LongTensor(chat_history),user_input_ids], dim=-1) | |
chat_history = mdl.generate(bot_input_ids,max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist() | |
print(chat_history) | |
response = chat_tkn.decode(chat_history[0]).split("<|endoftext|") | |
print("starting to print response") | |
print(response) | |
#html for display | |
html = "<div class='mybot'>" | |
for x, mesg in enumerate(response): | |
if x%2!=0 : | |
mesg="Alicia:"+mesg | |
clazz="alicia" | |
else : | |
clazz="user" | |
print("value of x") | |
print(x) | |
print("message") | |
print(mesg) | |
html += "<div class='mesg {}'> {}</div>".format(clazz,mesg) | |
html += "</div>" | |
print(html) | |
return html, chat_history | |
import gradio as grad | |
css =""" | |
.mychat {display:flex;flex-direction:column} | |
.mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%} | |
.mesg.user {background-color:lightblue;color:white} | |
.mesg.alicia {background-color:orange;color:white,align-self:self-end} | |
.footer {display:none !important} | |
""" | |
#text=grad.inputs.Textbox(placeholder="Lets chat") | |
text=grad.components.Textbox(placeholder="Lets chat") | |
grad.Interface(fn=converse, theme="default",inputs=[text,"state"],outputs=["html","state"],css=css).launch() | |