Spaces:
Sleeping
Sleeping
shamimjony1000
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import streamlit as st
|
|
3 |
from tensorflow.keras.preprocessing import image
|
4 |
from tensorflow.keras.models import load_model
|
5 |
from tensorflow.keras.applications.resnet50 import preprocess_input
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
|
8 |
# Load the trained model
|
9 |
model_path = 'my_cnn.h5' # or '/content/my_model.keras'
|
@@ -30,15 +29,35 @@ def classify_image(img):
|
|
30 |
# Streamlit application
|
31 |
def main():
|
32 |
st.title("Mosquito Species Classification")
|
33 |
-
st.write("Upload a mosquito image to classify its species.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# File uploader for image input
|
36 |
-
uploaded_file = st.file_uploader("
|
37 |
|
38 |
if uploaded_file is not None:
|
39 |
# Load the image for display
|
40 |
img = image.load_img(uploaded_file, target_size=(224, 224))
|
41 |
-
st.image(img, caption='Uploaded Image',
|
42 |
|
43 |
# Classify the image
|
44 |
result, probabilities = classify_image(img)
|
|
|
3 |
from tensorflow.keras.preprocessing import image
|
4 |
from tensorflow.keras.models import load_model
|
5 |
from tensorflow.keras.applications.resnet50 import preprocess_input
|
|
|
6 |
|
7 |
# Load the trained model
|
8 |
model_path = 'my_cnn.h5' # or '/content/my_model.keras'
|
|
|
29 |
# Streamlit application
|
30 |
def main():
|
31 |
st.title("Mosquito Species Classification")
|
32 |
+
st.write("Upload a mosquito image or select an example image to classify its species.")
|
33 |
+
|
34 |
+
# Example images
|
35 |
+
example_images = {
|
36 |
+
"Aedes Aegypti": "Aedes_aegypti_1_0_832.jpg",
|
37 |
+
"Anopheles Stephensi": "Anopheles_stephensi_1_0_364.jpg",
|
38 |
+
"Culex Quinquefasciatus": "Culex_quinquefasciatus_1_0_1307.jpg",
|
39 |
+
}
|
40 |
+
|
41 |
+
# Select an example image
|
42 |
+
selected_example = st.selectbox("Or select an example image:", list(example_images.keys()))
|
43 |
+
|
44 |
+
if selected_example:
|
45 |
+
img_path = example_images[selected_example]
|
46 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
47 |
+
st.image(img, caption=f'Selected Example Image: {selected_example}', width=224)
|
48 |
+
|
49 |
+
# Classify the example image
|
50 |
+
result, probabilities = classify_image(img)
|
51 |
+
st.write(f'Predicted mosquito species: **{result}**')
|
52 |
+
st.write(f'Prediction probabilities: {probabilities}')
|
53 |
|
54 |
# File uploader for image input
|
55 |
+
uploaded_file = st.file_uploader("Or upload your own image...", type=["jpg", "jpeg", "png"])
|
56 |
|
57 |
if uploaded_file is not None:
|
58 |
# Load the image for display
|
59 |
img = image.load_img(uploaded_file, target_size=(224, 224))
|
60 |
+
st.image(img, caption='Uploaded Image', width=224)
|
61 |
|
62 |
# Classify the image
|
63 |
result, probabilities = classify_image(img)
|