Update summary.py
Browse files- summary.py +2 -2
summary.py
CHANGED
|
@@ -2,13 +2,13 @@ import torch
|
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import PegasusForConditionalGeneration, AutoTokenizer
|
| 4 |
|
| 5 |
-
@st.cache(allow_output_mutation=True)
|
| 6 |
-
|
| 7 |
model_name = 'google/pegasus-cnn_dailymail'
|
| 8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
|
| 11 |
|
|
|
|
|
|
|
| 12 |
def summarize(passage):
|
| 13 |
txt = " ".join(passage)
|
| 14 |
batch = tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import PegasusForConditionalGeneration, AutoTokenizer
|
| 4 |
|
|
|
|
|
|
|
| 5 |
model_name = 'google/pegasus-cnn_dailymail'
|
| 6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
|
| 9 |
|
| 10 |
+
@st.cache(allow_output_mutation=True)
|
| 11 |
+
|
| 12 |
def summarize(passage):
|
| 13 |
txt = " ".join(passage)
|
| 14 |
batch = tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)
|