Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import faiss
|
| 5 |
+
import fitz # PyMuPDF for PDFs
|
| 6 |
+
import docx
|
| 7 |
+
import openpyxl
|
| 8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.vectorstores import FAISS
|
| 10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
+
from langchain.docstore.document import Document
|
| 12 |
+
from langchain_community.llms import Groq
|
| 13 |
+
from langchain.chains import RetrievalQA
|
| 14 |
+
from langchain.schema import Document as LCDocument
|
| 15 |
+
|
| 16 |
+
# Initialize LLM
|
| 17 |
+
llm = Groq(
|
| 18 |
+
model="llama3-8b-8192",
|
| 19 |
+
api_key=os.getenv("GROQ_API_KEY") # Put this in Hugging Face secrets
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Embeddings model
|
| 23 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 24 |
+
|
| 25 |
+
# File processors
|
| 26 |
+
def read_pdf(file_path):
|
| 27 |
+
text = ""
|
| 28 |
+
doc = fitz.open(file_path)
|
| 29 |
+
for page in doc:
|
| 30 |
+
text += page.get_text()
|
| 31 |
+
return text
|
| 32 |
+
|
| 33 |
+
def read_docx(file_path):
|
| 34 |
+
doc = docx.Document(file_path)
|
| 35 |
+
return "\n".join([p.text for p in doc.paragraphs])
|
| 36 |
+
|
| 37 |
+
def read_excel(file_path):
|
| 38 |
+
wb = openpyxl.load_workbook(file_path, data_only=True)
|
| 39 |
+
text = ""
|
| 40 |
+
for sheet in wb.sheetnames:
|
| 41 |
+
ws = wb[sheet]
|
| 42 |
+
for row in ws.iter_rows(values_only=True):
|
| 43 |
+
text += " ".join([str(cell) for cell in row if cell is not None]) + "\n"
|
| 44 |
+
return text
|
| 45 |
+
|
| 46 |
+
def process_file(uploaded_file):
|
| 47 |
+
suffix = uploaded_file.name.split(".")[-1]
|
| 48 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix="." + suffix) as tmp_file:
|
| 49 |
+
tmp_file.write(uploaded_file.read())
|
| 50 |
+
tmp_path = tmp_file.name
|
| 51 |
+
|
| 52 |
+
if suffix.lower() == "pdf":
|
| 53 |
+
return read_pdf(tmp_path)
|
| 54 |
+
elif suffix.lower() in ["docx"]:
|
| 55 |
+
return read_docx(tmp_path)
|
| 56 |
+
elif suffix.lower() in ["xlsx"]:
|
| 57 |
+
return read_excel(tmp_path)
|
| 58 |
+
else:
|
| 59 |
+
return "Unsupported file type."
|
| 60 |
+
|
| 61 |
+
# Streamlit UI
|
| 62 |
+
st.title("📄 RAG Document QA with Faiss + LLaMA3")
|
| 63 |
+
|
| 64 |
+
uploaded_file = st.file_uploader("Upload a PDF, Word or Excel file", type=["pdf", "docx", "xlsx"])
|
| 65 |
+
|
| 66 |
+
if uploaded_file:
|
| 67 |
+
st.success("✅ File uploaded successfully.")
|
| 68 |
+
raw_text = process_file(uploaded_file)
|
| 69 |
+
|
| 70 |
+
# Split text into chunks
|
| 71 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 72 |
+
texts = splitter.split_text(raw_text)
|
| 73 |
+
docs = [Document(page_content=t) for t in texts]
|
| 74 |
+
|
| 75 |
+
# Embed and create vector store
|
| 76 |
+
with st.spinner("Indexing document..."):
|
| 77 |
+
db = FAISS.from_documents(docs, embedding_model)
|
| 78 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})
|
| 79 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
| 80 |
+
|
| 81 |
+
st.success("✅ Document indexed! Ask your questions below:")
|
| 82 |
+
|
| 83 |
+
user_query = st.text_input("❓ Ask a question about your document")
|
| 84 |
+
if user_query:
|
| 85 |
+
with st.spinner("Generating answer..."):
|
| 86 |
+
answer = qa.run(user_query)
|
| 87 |
+
st.markdown(f"**💬 Answer:** {answer}")
|