shamil-123 commited on
Commit
ddc862e
·
1 Parent(s): 70b750a

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -1,35 +1,4 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ CNN_imdb.keras filter=lfs diff=lfs merge=lfs -text
2
+ imdb_DNN.keras filter=lfs diff=lfs merge=lfs -text
3
+ imdb_LSTM.keras filter=lfs diff=lfs merge=lfs -text
4
+ RNN_imdb.keras filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BackPropogation.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tqdm import tqdm
3
+
4
+
5
+ class BackPropogation:
6
+ def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
7
+ self.bias = 0
8
+ self.learning_rate = learning_rate
9
+ self.max_epochs = epochs
10
+ self.activation_function = activation_function
11
+
12
+
13
+ def activate(self, x):
14
+ if self.activation_function == 'step':
15
+ return 1 if x >= 0 else 0
16
+ elif self.activation_function == 'sigmoid':
17
+ return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
18
+ elif self.activation_function == 'relu':
19
+ return 1 if max(0,x)>=0.5 else 0
20
+
21
+ def fit(self, X, y):
22
+ error_sum=0
23
+ n_features = X.shape[1]
24
+ self.weights = np.zeros((n_features))
25
+ for epoch in tqdm(range(self.max_epochs)):
26
+ for i in range(len(X)):
27
+ inputs = X[i]
28
+ target = y[i]
29
+ weighted_sum = np.dot(inputs, self.weights) + self.bias
30
+ prediction = self.activate(weighted_sum)
31
+
32
+ # Calculating loss and updating weights.
33
+ error = target - prediction
34
+ self.weights += self.learning_rate * error * inputs
35
+ self.bias += self.learning_rate * error
36
+
37
+ print(f"Updated Weights after epoch {epoch} with {self.weights}")
38
+ print("Training Completed")
39
+
40
+ def predict(self, X):
41
+ predictions = []
42
+ for i in range(len(X)):
43
+ inputs = X[i]
44
+ weighted_sum = np.dot(inputs, self.weights) + self.bias
45
+ prediction = self.activate(weighted_sum)
46
+ predictions.append(prediction)
47
+ return predictions
48
+
49
+
50
+
51
+
52
+
53
+
CNN_imdb.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c38e27f28119cbbe9d563e1a841c463934dced245c42b160c8e7e5617c1678f
3
+ size 391803285
RNN_imdb.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55ef888fd4263b4d4b23e8c2a7543ee0292c61b60ce75deac03ebe34d9e132b9
3
+ size 2017417
__init__.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tqdm import tqdm
3
+
4
+
5
+ class Perceptron:
6
+
7
+ def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
8
+ self.bias = 0
9
+ self.learning_rate = learning_rate
10
+ self.max_epochs = epochs
11
+ self.activation_function = activation_function
12
+
13
+
14
+ def activate(self, x):
15
+ if self.activation_function == 'step':
16
+ return 1 if x >= 0 else 0
17
+ elif self.activation_function == 'sigmoid':
18
+ return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
19
+ elif self.activation_function == 'relu':
20
+ return 1 if max(0,x)>=0.5 else 0
21
+
22
+ def fit(self, X, y):
23
+ n_features = X.shape[1]
24
+ self.weights = np.random.randint(n_features, size=(n_features))
25
+ for epoch in tqdm(range(self.max_epochs)):
26
+ for i in range(len(X)):
27
+ inputs = X[i]
28
+ target = y[i]
29
+ weighted_sum = np.dot(inputs, self.weights) + self.bias
30
+ prediction = self.activate(weighted_sum)
31
+ print("Training Completed")
32
+
33
+ def predict(self, X):
34
+ predictions = []
35
+ for i in range(len(X)):
36
+ inputs = X[i]
37
+ weighted_sum = np.dot(inputs, self.weights) + self.bias
38
+ prediction = self.activate(weighted_sum)
39
+ predictions.append(prediction)
40
+ return predictions
41
+
42
+
43
+
44
+
45
+
46
+
imdb_DNN.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50ed7b8145632dc6f350464cd0d8f8a9507b3a9fecd987f2faa9bcbaec420de8
3
+ size 10723181
imdb_LSTM.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc939b31b4a8eab19db386502fa1d090f6cd5d8d84c9c4170f7228b746bb5b7c
3
+ size 4185638
imdb_back_prop.pkl ADDED
Binary file (4.3 kB). View file
 
imdb_perceptron.pkl ADDED
Binary file (2.28 kB). View file
 
perceptron.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tqdm import tqdm
3
+
4
+
5
+ class Perceptron:
6
+
7
+ def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
8
+ self.bias = 0
9
+ self.learning_rate = learning_rate
10
+ self.max_epochs = epochs
11
+ self.activation_function = activation_function
12
+
13
+
14
+ def activate(self, x):
15
+ if self.activation_function == 'step':
16
+ return 1 if x >= 0 else 0
17
+ elif self.activation_function == 'sigmoid':
18
+ return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
19
+ elif self.activation_function == 'relu':
20
+ return 1 if max(0,x)>=0.5 else 0
21
+
22
+ def fit(self, X, y):
23
+ n_features = X.shape[1]
24
+ self.weights = np.random.randint(n_features, size=(n_features))
25
+ for epoch in tqdm(range(self.max_epochs)):
26
+ for i in range(len(X)):
27
+ inputs = X[i]
28
+ target = y[i]
29
+ weighted_sum = np.dot(inputs, self.weights) + self.bias
30
+ prediction = self.activate(weighted_sum)
31
+ print("Training Completed")
32
+
33
+ def predict(self, X):
34
+ predictions = []
35
+ for i in range(len(X)):
36
+ inputs = X[i]
37
+ weighted_sum = np.dot(inputs, self.weights) + self.bias
38
+ prediction = self.activate(weighted_sum)
39
+ predictions.append(prediction)
40
+ return predictions
41
+
42
+
43
+
44
+
45
+
46
+
streamlitapp.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from PIL import Image
4
+ from tensorflow.keras.models import load_model
5
+ from tensorflow.keras.datasets import imdb
6
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
7
+ import pickle
8
+ import sys
9
+
10
+ sys.path.append(r"E:\3rd sem\Deep Learning\Streamlit\Perceptron")
11
+ sys.path.append(r"E:\3rd sem\Deep Learning\Streamlit\Back_propagatin")
12
+ # Load word index for Sentiment Classification
13
+ word_to_index = imdb.get_word_index()
14
+
15
+ # Function to perform sentiment classification
16
+ def sentiment_classification(new_review_text, model):
17
+ max_review_length = 500
18
+ new_review_tokens = [word_to_index.get(word, 0) for word in new_review_text.split()]
19
+ new_review_tokens = pad_sequences([new_review_tokens], maxlen=max_review_length)
20
+ prediction = model.predict(new_review_tokens)
21
+ if type(prediction) == list:
22
+ prediction = prediction[0]
23
+ return "Positive" if prediction > 0.5 else "Negative"
24
+
25
+ # Function to perform tumor detection
26
+ def tumor_detection(img, model):
27
+ img = Image.open(img)
28
+ img=img.resize((128,128))
29
+ img=np.array(img)
30
+ input_img = np.expand_dims(img, axis=0)
31
+ res = model.predict(input_img)
32
+ return "Tumor Detected" if res else "No Tumor"
33
+
34
+ # Streamlit App
35
+ st.title("Deep Prediction")
36
+
37
+ # Choose between tasks
38
+ task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection"))
39
+
40
+ if task == "Sentiment Classification":
41
+ # Input box for new review
42
+ new_review_text = st.text_area("Enter a New Review:", value="")
43
+ if st.button("Submit") and not new_review_text.strip():
44
+ st.warning("Please enter a review.")
45
+
46
+ if new_review_text.strip():
47
+ st.subheader("Choose Model for Sentiment Classification")
48
+ model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM"))
49
+
50
+ # Load models dynamically based on the selected option
51
+ if model_option == "Perceptron":
52
+ with open('imdb_perceptron.pkl', 'rb') as file:
53
+ model = pickle.load(file)
54
+ elif model_option == "Backpropagation":
55
+ with open('imdb_back_prop.pkl', 'rb') as file:
56
+ model = pickle.load(file)
57
+ elif model_option == "DNN":
58
+ model = load_model('imdb_DNN.keras')
59
+ elif model_option == "RNN":
60
+ model = load_model('RNN_imdb.keras')
61
+ elif model_option == "LSTM":
62
+ model = load_model('imdb_LSTM.keras')
63
+
64
+ if st.button("Classify Sentiment"):
65
+ result = sentiment_classification(new_review_text, model)
66
+ st.subheader("Sentiment Classification Result")
67
+ st.write(f"**{result}**")
68
+
69
+ elif task == "Tumor Detection":
70
+ st.subheader("Tumor Detection")
71
+ uploaded_file = st.file_uploader("Choose a tumor image...", type=["jpg", "jpeg", "png"])
72
+
73
+ if uploaded_file is not None:
74
+ # Load the tumor detection model
75
+ model = load_model('CNN_imdb.keras')
76
+ st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200)
77
+ st.write("")
78
+
79
+ if st.button("Detect Tumor"):
80
+ result = tumor_detection(uploaded_file, model)
81
+ st.subheader("Tumor Detection Result")
82
+ st.write(f"**{result}**")