Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tensorflow as tf
|
3 |
+
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import gradio as gr
|
7 |
+
import tensorflow_hub as hub
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
|
11 |
+
def tensor_to_image(tensor):
|
12 |
+
tensor = tensor*255
|
13 |
+
tensor = np.array(tensor, dtype=np.uint8)
|
14 |
+
if np.ndim(tensor)>3:
|
15 |
+
assert tensor.shape[0] == 1
|
16 |
+
tensor = tensor[0]
|
17 |
+
return PIL.Image.fromarray(tensor)
|
18 |
+
|
19 |
+
|
20 |
+
style_urls = {
|
21 |
+
'Kanagawa great wave': 'The_Great_Wave_off_Kanagawa.jpg',
|
22 |
+
'Kandinsky composition 7': 'Kandinsky_Composition_7.jpg',
|
23 |
+
'Hubble pillars of creation': 'Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg',
|
24 |
+
'Van gogh starry night': 'Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg',
|
25 |
+
'Turner nantes': 'JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg',
|
26 |
+
'Munch scream': 'Edvard_Munch.jpg',
|
27 |
+
'Picasso demoiselles avignon': 'Les_Demoiselles.jpg',
|
28 |
+
'Picasso violin': 'picaso_violin.jpg',
|
29 |
+
'Picasso bottle of rum': 'picaso_rum.jpg',
|
30 |
+
'Fire': 'Large_bonfire.jpg',
|
31 |
+
'Derkovits woman head': 'Derkovits_Gyula_Woman_head_1922.jpg',
|
32 |
+
'Amadeo style life': 'Amadeo_Souza_Cardoso.jpg',
|
33 |
+
'Derkovtis talig': 'Derkovits_Gyula_Talig.jpg',
|
34 |
+
'Kadishman': 'kadishman.jpeg'
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
style_images = [k for k, v in style_urls.items()]
|
39 |
+
|
40 |
+
|
41 |
+
content_image_input = gr.inputs.Image(label="Content Image")
|
42 |
+
radio_style = gr.Radio(style_images, label="Choose Style")
|
43 |
+
|
44 |
+
|
45 |
+
def perform_neural_transfer(content_image_input, style_image_input):
|
46 |
+
|
47 |
+
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
48 |
+
|
49 |
+
style_image_input = style_urls[style_image_input]
|
50 |
+
style_image_input = plt.imread(style_image_input)
|
51 |
+
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
52 |
+
|
53 |
+
style_image = tf.image.resize(style_image, (256, 256))
|
54 |
+
|
55 |
+
hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
|
56 |
+
|
57 |
+
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
|
58 |
+
stylized_image = outputs[0]
|
59 |
+
|
60 |
+
return tensor_to_image(stylized_image)
|
61 |
+
|
62 |
+
|
63 |
+
app_interface = gr.Interface(fn=perform_neural_transfer,
|
64 |
+
inputs=[content_image_input, radio_style],
|
65 |
+
outputs="image",
|
66 |
+
title="Art Generation with Neural Style Transfer",
|
67 |
+
)
|
68 |
+
app_interface.launch()
|