Spaces:
Build error
Build error
import torch | |
from multiprocessing import Pool | |
import commons | |
import utils | |
from tqdm import tqdm | |
from text import cleaned_text_to_sequence, get_bert | |
import argparse | |
import torch.multiprocessing as mp | |
import os | |
os.environ['http_proxy'] = 'http://localhost:11796' | |
os.environ['https_proxy'] = 'http://localhost:11796' | |
def process_line(line): | |
rank = mp.current_process()._identity | |
rank = rank[0] if len(rank) > 0 else 0 | |
if torch.cuda.is_available(): | |
gpu_id = rank % torch.cuda.device_count() | |
device = torch.device(f"cuda:{gpu_id}") | |
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|") | |
phone = phones.split(" ") | |
tone = [int(i) for i in tone.split(" ")] | |
word2ph = [int(i) for i in word2ph.split(" ")] | |
word2ph = [i for i in word2ph] | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_path = wav_path.replace(".wav", ".bert.pt") | |
try: | |
bert = torch.load(bert_path) | |
assert bert.shape[-1] == len(phone) | |
except Exception: | |
bert = get_bert(text, word2ph, language_str, device) | |
assert bert.shape[-1] == len(phone) | |
torch.save(bert, bert_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-c", "--config", type=str, default="configs/config.json") | |
parser.add_argument("--num_processes", type=int, default=2) | |
args = parser.parse_args() | |
config_path = args.config | |
hps = utils.get_hparams_from_file(config_path) | |
lines = [] | |
with open(hps.data.training_files, encoding="utf-8") as f: | |
lines.extend(f.readlines()) | |
with open(hps.data.validation_files, encoding="utf-8") as f: | |
lines.extend(f.readlines()) | |
num_processes = args.num_processes | |
with Pool(processes=num_processes) as pool: | |
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)): | |
pass | |