uma_bert_vits2 / app.py
Akito-UzukiP
fix bug
1df4c01
raw
history blame
9.47 kB
# flake8: noqa: E402
import sys, os
import logging
import os
import time
import numpy as np # 假设你使用NumPy来处理音频数据
import shutil # 用于删除文件夹和文件
from scipy.io import wavfile
import re
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np
net_g = None
device = "cuda"
curr_model_name:str = None
hps_:tuple = None
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JP":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
global net_g
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
torch.cuda.empty_cache()
return audio
__LOG__ = "./generation_logs.txt"
def tts_fn(text, model_name:str, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
global curr_model_name
if curr_model_name != model_name:
load_model(model_name)
# 清空 ./infer_save 文件夹
if os.path.exists('./infer_save'):
shutil.rmtree('./infer_save')
os.makedirs('./infer_save')
slices = text.split("\n")
slices = [slice for slice in slices if slice.strip() != ""]
audio_list = []
with torch.no_grad():
with open(__LOG__,"a",encoding="UTF-8") as f:
for slice in slices:
assert len(slice) < 250 # 限制输入的文本长度
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=list(hps_[curr_model_name].data.spk2id.keys())[0], language=language)
audio_list.append(audio)
# 创建唯一的文件名
timestamp = str(int(time.time() * 1000))
audio_file_path = f'./infer_save/audio_{timestamp}.wav'
# 保存音频数据到.wav文件
wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16) # 生成半秒的静音
audio_list.append(silence) # 将静音添加到列表中
f.write(f"{slice} | {curr_model_name}\n")
print(f"{slice} | {curr_model_name}")
audio_concat = np.concatenate(audio_list)
return "Success", (hps.data.sampling_rate, audio_concat)
def load_model(model_name:str):
global net_g,curr_model_name,hps_,hps
assert os.path.exists(os.path.join("logs",model_name))
curr_model_name = model_name
hps = hps_[curr_model_name]
all_files = os.listdir(os.path.join("logs",model_name))
hps = utils.get_hparams_from_file(os.path.join("logs",model_name,"config.json"))
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
#获取G_最大的模型:
g_files = [f for f in all_files if f.startswith('G_') and f.endswith('.pth')]
# 提取文件名中的数字,并找到最大的数字
max_num = -1
max_file = None
for f in g_files:
num = int(re.search(r'G_(\d+).pth', f).group(1))
if num > max_num:
max_num = num
max_file = f
# 加载对应的模型
if max_file:
file_path = os.path.join('./logs/',model_name, max_file)
_ = utils.load_checkpoint(file_path, net_g, None, skip_optimizer=True)
else:
print("没有找到合适的文件")
if __name__ == "__main__":
models = os.listdir("./logs")
hps_ = {}
for i in models:
hps_[i] = utils.get_hparams_from_file(os.path.join("./logs", i, "config.json"))
curr_model_name = models[0]
hps = hps_[curr_model_name]
# speaker_ids = hps.data.spk2id
# speakers = list(speaker_ids.keys())
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
languages = ["JP"]
with gr.Blocks() as app:
with gr.Tab(label="umamusume"):
with gr.Row():
with gr.Column():
text = gr.TextArea(
label="Text",
placeholder="Input Text Here",
value="はりきっていこう!",
)
speaker = gr.Dropdown(
choices=models, value=models[0], label="Models"
)
with gr.Accordion("Settings",open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="Language"
)
btn = gr.Button("Generate!", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
"- Still Updating...\n"
"- We found that model trained with only 1 speaker may generate better audio than multi-speaker model.\n")
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
],
outputs=[text_output, audio_output],
)
app.launch(server_name="0.0.0.0")