shahvatsalm commited on
Commit
f6ea33d
1 Parent(s): 6148897

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -5
app.py CHANGED
@@ -1,7 +1,44 @@
1
- import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
+ peft_model_id = "shahvatsalm/Vatsals_LLM_TextGeneration_marketing"
6
+ config = PeftConfig.from_pretrained(peft_model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ config.base_model_name_or_path,
9
+ return_dict=True,
10
+ load_in_8bit=True,
11
+ device_map="auto",
12
+ )
13
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
14
 
15
+ # Load the Lora model
16
+ model = PeftModel.from_pretrained(model, peft_model_id)
17
+
18
+
19
+ def make_inference(product, description):
20
+ batch = tokenizer(
21
+ f"Below is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email",
22
+ return_tensors="pt",
23
+ )
24
+
25
+ with torch.cuda.amp.autocast():
26
+ output_tokens = model.generate(**batch, max_new_tokens=50)
27
+
28
+ return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
29
+
30
+
31
+ if __name__ == "__main__":
32
+ # make a gradio interface
33
+ import gradio as gr
34
+
35
+ gr.Interface(
36
+ make_inference,
37
+ [
38
+ gr.inputs.Textbox(lines=2, label="Product Name"),
39
+ gr.inputs.Textbox(lines=5, label="Product Description"),
40
+ ],
41
+ gr.outputs.Textbox(label="Ad"),
42
+ title="MarketMail-AI",
43
+ description="MarketMail-AI is a tool that generates marketing emails for products.",
44
+ ).launch()