shahkeyush2002 commited on
Commit
e50e42a
·
1 Parent(s): f86d315
Files changed (11) hide show
  1. 013.png +0 -0
  2. Boundary_Detection.ipynb +0 -0
  3. CNN_Model.ipynb +1 -0
  4. Defect_013.png +0 -0
  5. Hole.png +0 -0
  6. LICENSE +201 -0
  7. README.md +82 -9
  8. Thread.png +0 -0
  9. app.py +107 -0
  10. download (1).jpeg +0 -0
  11. requirements.txt +309 -0
013.png ADDED
Boundary_Detection.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
CNN_Model.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.10","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"# **Textile Defect Classification Using CNN**","metadata":{}},{"cell_type":"markdown","source":"### **Importing Libraries**","metadata":{}},{"cell_type":"code","source":"#importing relevant libraries\n\nimport numpy as np \nimport pandas as pd \nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n \nimport h5py\nimport cv2\nfrom PIL import Image\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nimport pickle\nimport matplotlib.image as mpimg\n\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import confusion_matrix\n\n\nimport tensorflow as tf\nimport keras\nfrom keras import layers\nfrom keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import Sequential\nfrom keras.layers.core import Flatten, Dense, Dropout\nfrom keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D\n\n","metadata":{"_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"/kaggle/input/textiledefectdetection/train64.h5\n/kaggle/input/textiledefectdetection/matchingtDATASET_test_32.h5\n/kaggle/input/textiledefectdetection/test32.csv\n/kaggle/input/textiledefectdetection/train32.csv\n/kaggle/input/textiledefectdetection/test32.h5\n/kaggle/input/textiledefectdetection/train32.h5\n/kaggle/input/textiledefectdetection/test64.csv\n/kaggle/input/textiledefectdetection/matchingtDATASET_train_32.h5\n/kaggle/input/textiledefectdetection/matchingtDATASET_test_64.h5\n/kaggle/input/textiledefectdetection/matchingtDATASET_train_64.h5\n/kaggle/input/textiledefectdetection/test64.h5\n/kaggle/input/textiledefectdetection/train64.csv\n/kaggle/input/fabric-defects/download (3).jpeg\n/kaggle/input/fabric-defects/download (4).jpeg\n/kaggle/input/fabric-defects/download (6).jpeg\n/kaggle/input/fabric-defects/download.jpeg\n/kaggle/input/fabric-defects/download (1).jpeg\n/kaggle/input/fabric-defects/images (1).jpeg\n/kaggle/input/fabric-defects/download (5).jpeg\n/kaggle/input/fabric-defects/Hole.png\n/kaggle/input/fabric-defects/Broken-pick.png\n/kaggle/input/fabric-defects/download (2).jpeg\n","output_type":"stream"}]},{"cell_type":"code","source":"#loading fabric images\n\nfilename = \"../input/textiledefectdetection/train64.h5\"\n\nwith h5py.File(filename, \"r\") as f:\n print(\"Keys: %s\" % f.keys())\n a_group_key = list(f.keys())[0]\n X_train = np.array(f[a_group_key])\n \n \nfilename = \"../input/textiledefectdetection/test64.h5\"\n\nwith h5py.File(filename, \"r\") as f:\n print(\"Keys: %s\" % f.keys())\n a_group_key = list(f.keys())[0]\n X_test = np.array(f[a_group_key])","metadata":{"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"Keys: <KeysViewHDF5 ['images']>\nKeys: <KeysViewHDF5 ['images']>\n","output_type":"stream"}]},{"cell_type":"code","source":"X = np.concatenate((X_train, X_test))\nX.shape","metadata":{"trusted":true},"execution_count":3,"outputs":[{"execution_count":3,"output_type":"execute_result","data":{"text/plain":"(96000, 64, 64, 1)"},"metadata":{}}]},{"cell_type":"code","source":"#creating dataframe\n\ndf_train = pd.read_csv(\"../input/textiledefectdetection/train64.csv\")\ndf_test = pd.read_csv(\"../input/textiledefectdetection/test64.csv\")\ndf = pd.concat([df_train,df_test])\ndf.shape","metadata":{"trusted":true},"execution_count":4,"outputs":[{"execution_count":4,"output_type":"execute_result","data":{"text/plain":"(96000, 5)"},"metadata":{}}]},{"cell_type":"markdown","source":"### **Exploratory Data Analysis**","metadata":{}},{"cell_type":"code","source":"plt.imshow(X[40000])\n","metadata":{"trusted":true},"execution_count":5,"outputs":[{"execution_count":5,"output_type":"execute_result","data":{"text/plain":"<matplotlib.image.AxesImage at 0x7fe477852390>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD7CAYAAACscuKmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABEjUlEQVR4nO29aaxkyXUe+J17b95c3/6qXldX9Uq2uJgym3KDpkYcgyYtg5YF848gWDYGnAGBBgaagQzbMMkZYGAPZgbSH8v6MRDQGGnMHxpTsi2ZBCHLpmkStiGaYlEkxaXJ3ptV1VX19iX3LeZHZuX5zqmXWY+sqqwWMz6gUJEvIuPGjRuR95w453xHQgiIiIj48UfyoAcQERExH8TNHhGxIIibPSJiQRA3e0TEgiBu9oiIBUHc7BERC4K72uwi8mER+b6IvCQin7hXg4qIiLj3kB/Vzi4iKYAXAPwsgKsAvgrgl0II3713w4uIiLhXyO7iu+8F8FII4RUAEJFPA/gIgKmbPV2uhsK5VQBAGIitHNLnxP0AcdM+t/NX0O9J3/af9KcMauguRZful21dodyblJcKnUm5nHSndA4c9ivmc6OT67XcFFRz7TOlgfSDvdFh0C8OZtRlid5cJvZGZ/3Et/u6LAa9dFJOsuFpzUfXHdqbEXqGXJO4Z5snA20nto7vpUNjGvbdg6drJz1bxbcdzijHBvdcQoHGldox8v2YOXBj5HHIALZuMKWdm+6kq3+Qjr3RMBh10g4NdEPb3cEId7PZLwK4Qp+vAvjLs75QOLeKS//X/wgA6J3kpk46Ojmh7GaD5i3dK0zKw7JbwPQgitv21kp7p48pa9iHl9K+3Xu3rXv4J29Oyu8///Kk/BcrV0y7hJ7S7+/8JVN3+fVH9dqZvc/3PvL6pLxaaE3Ku52aaVfvFyflRs/OY6OrnzcrDe0vb5l2vJGGsGvjxf3NSXl/e3lSrq03TTvenI2Tkqkr0g8j32clt4v00tLhpMwbHwDaA32GL9OYjnerdhwNbVe+aTdZoa5l/vH2G5831qBo69oX9E2R1Oz4y1VdMJ22rs3Bnu0kq+sF80M73/mRzmOBprjQsOu7cr2t/b183dQN9w8BAP+190eYhvt+QCciz4rIZRG5PDhu3PkLERER9wV382a/BuAR+nxp/DeDEMJzAJ4DgOITl0K/OxYLnRjPb+WkZH/h01R/4fpFFSt9H1lTf7vStqmyv+T0whavMQz1D/mB/S08bNm31y2sp3XzuZqoOP6eZfvWf2NjZVLeq1sRf7etb/DuUB/NzeaSaTcY6rgKqZsrEt35rV9K7RupPdC3UO50nK2a3s9JQ++5309Nu3JR32rDnq1rk+SwsqKvq97Azim/sS8sH5s6VkPecU6lqsNlq1+9sr2h/TfsWz8/1nHMEun5821rgtbZsGm3TJdUm4TXae6kTtELeDGepcm0qxdPO05l6NBz6k/TS6fjbt7sXwXwlIg8ISI5gL8N4LN30V9ERMR9xI/8Zg8h9EXkfwLw7wCkAH47hPCdezayiIiIe4q7EeMRQvhDAH94j8YSERFxH3FXm/2HxhAIrdElpeesA6wzOfMMfw456fYtZ14j3ccd7CKQSsk6kzfV5HXVtWrXbP9751TffmHj/KT8dPV10y4l5bDmDg9WS3oqftK2J7ZDb/MZ42jKWQEAnK/Z84JCPji13UrBjqOS6WQ1+/ZEf72oOvbqEo23acfBZwfelhdIty1s6JgGzkR3+Iae9mep1XNXy3rtjaIe7r5j44Zp16SziStrdozdk9OXeEhnfzYYsN5vNd/eET3DfLpp0ijM7jHzWULSD6eWAUAGfNh0+lqZheguGxGxIIibPSJiQTBfMR5QcW/Gz0xwop4xkxRVJPRCE5t/yLIEABC6U7Y0sakNAAr1AbWzdZ3XtNPvXnpoUr65vmraseltKbHOLKu5isivhTVTd9RREfSR6uGkPHCiY4ucNx525qplEtfZ8+5C6ci0Y5Xhj3eeNHVszqsUVM9pZXZS+2RGq6za+2zuqVlxqajz4VWVw7b2cdxwjjmZPqgXDs9NytXUeiw+tbIzKW9vWAekdkdNcUmXxPHTtZ1T66yq59YmrdXgVdMpuM2hh9VKWnPSn64WSME+C8kL4+9MH0N8s0dELAjiZo+IWBDEzR4RsSB4YDp7yLxZgXQf70qb6G9SUqDIH2fqGJL+FzLbx5DccUOHoqSc12HaHpxaBoDl17X/Gw+pC+t/fuitpl1hnQInnO/lOuns3v10u75MDdW8dHHF6tsvd9TF9Mrhqql795Z6LJdFlc2esy2x7szBM4A1j+UUxFIq2Mlq9ygAxQW4dGuqU1YLqmOzCQ0Arm7puUXqTG8c6XZUV33+pXzTtPvJ1Tcm5Yvrdq5eOaJzgKHOgfjXHC0XcevPfzZ101xw3dmE8DmRPxNgc1tvRjwih6Mn9gakNDYBnh7wNvrK9J4jIiJ+nBA3e0TEgmC+YnwQSG/0+xK8txGLQx0ncjIRAv08ZU6s7IoLROY+yFKRkpUor1uZqvDGgX5od0xdtqtmneZ5NQV947FLpt0miapvLW+bugq5+RXd+DstHeT1lor0XhVg1OvWXLW9rOoFm++uNK2Zj/us5taUdUIEG11SNXIXf18tTiftqFXVBHiuqF5+3gS4uqxqzeGxjQIcUv85eQZeP1427Tg6jlUGAKhuaP+NoP0zfwIA4wGYONMvBwze5mnH3yPTW9KbLsZ77860d7oYnwycqtvVToKPektuDSyK8RERC4+42SMiFgRzD4RJx8Er/YKvI++mrv0NCjkF/pN3V/AnniQeDQs+MkOL7BElzksOXa0MDUfDRCeglW0VHY9ft+Lnfyk/MSkvPWYDUEp08c2aPZlud3VSDtpK0FDKrMjGNE8Dd6J/SN+7UFHvOqZ4AoCjrrbz3G8pqU0d8krsOsmR1RA/xvUyEVbQMfV+z5JLLJd0fnZ3LEnHUdC2eVHnre0CiF7u6en8o+sHpu7S6uGkfJ3E/ZMjS4AR2sS117TrL20S51/Jida8rsjKk1oN0BJi+KXJy5g9Or321uuf3g7qQTcrQCa+2SMiFgRxs0dELAjiZo+IWBDMVWeXoOR6g57zAGJzhNPFh2QmMQa7gietPL3swTp72nUmwAFF1XWs4pXkqlOX9tXEU9q1+l+d9EFv8npbTYkTH6/tm7pWj6iIpxBZAEC1pNfuOaLHk5bqs9zHo1Wry75AYYEcbQdY0kqjaroxNclEx9FxgCXAuNZYnZR91NtKTmcazuQ1ONExtugcx6ulHeJo33GEk+86p5TLf2FFy39afcS0u7K9rh/27Law+rc7J2KdnVRqF5jneOOnm1KHBfIW7TsbHa0/qdlzolAaP4vd6e/v+GaPiFgQxM0eEbEgmLMHnQbXi88xN+NnR0jk52CDgQ9YoLI3vXEwA4tbSceKSmFA8pYzb4Dq0jp5wh1ZMbje0mnd71hxq1lR0feJ8q6pa5FofbW+Oin71E1rxGN3VLcqRHNfr3d9VTnzOAAHAC6U1SznOeVPeno/J8R/V3TBLgzv5fdoWVWUQzLzveG835Yo5VVes7Jvb4fujYJugn+2FX2gh4dWjH+Fgmbe/rCqUI/UrFpz80jNft3cmvY4qCr1UzCFX+I2LYw/Oz2kV6H1nRJHfdGrqTpGGViSjkFppM4Nr07XX+ObPSJiQRA3e0TEgiBu9oiIBcF8TW8DIB+ril4f6S2RuccTW7BJhnUknyaY3WVzr7NrOSSkv3edeYOjiYLL10V1SZN1dudueqJ6E7uvAtYUV3E6apEOE5j0kU1hANAh19dCwY6/S9FWu3XVX78nW6ZdKdVr+Syu5UwV0wGRSvojjC3HWc9gsoxzJW2327Q69dUjPVdYW7LnCjcP9LwgO9L+/HnMMKN3llsTb9xcnZT/uKTEmlulE9OuVtazg50l+8w6fXaDdWtuCnmFT7ds8gu6uu4K9U+kmFnTXitd1znwZwKD8ugPg6/dhbusiPy2iGyLyLfpb+si8nkReXH8/9qsPiIiIh48ziLG/3MAH3Z/+wSAL4QQngLwhfHniIiINzHuKMaHEP6TiDzu/vwRAB8Ylz8F4EsAPn6nvpIhkB+P5JmBE+P58yD3YUFUJi45ceI+WiTm+LopHmniQrlYVA9ebu2q2J001fOrtGvtMeUdNd1s71hTE5NBFFN77aOuiq3saXaxYgkfjsg05jnluyTqcTSbJ3xoNHWMnvOvUlORtkCRbd6Djq9dLVhvw8bgdE++3KWY3j9SsX5j1aoF5U0V61tDNSkmjnhC+Ln7VMldrXvxphKO9M/ZPticebJuTalt0Hz7iExaj7w2fTpxw+fu5tF4dFJKM79HWPwfup17S2sazvIcnV41E1shhFu+hzcAbM1qHBER8eBx16fxIYSA2yNvJxCRZ0Xksohc7rca05pFRETcZ/yop/E3ReRCCOG6iFwAsD2tYQjhOQDPAUB185FwSxTxJ5IpUeAO8xlpdDjdjqfhYgnRp9ih62VtUgV6zoNuSFTVyYxxUJBC4cgSVBT31EuuUbcsHe2qfn75yFIi90gsZpE5cZP1RHVvUn64bEX89ZKelbbJI2+nYT2uTtgr0Z1gd7u6LLZW7ak1gwNoCk48PyZVg4kzvKddIdeH6FWS88t0ik+EGg3nsYg2R0A50Zf673V0HNt1Ox9v39AlnG7a+X4lbJzaBwAkTFFO8zjsWnk6sBjv05vxc6fu+1U7V3xrQ0f+MlEFZry+f9Q3+2cBfHRc/iiAz/yI/URERMwJZzG9/QsAXwbwNhG5KiIfA/CrAH5WRF4E8NfGnyMiIt7EOMtp/C9NqfrQPR5LRETEfcTc0z9NdHbPnU0mh5B68waVTdrd6UQCw66tY2+krDWdPEAK06dE8vzUvycta3rLOqTHOVPQckX1+0bXKl69gd5oSjfzen3dtAORXixn9rzgLTWNpOuQfSbzXnhkAhw6XTkn8kj23mPPOgCod9W81ujZucl9Xq0xvG7/8KpG36XubIK9DzlIslByfZfJ488RcGbOw1D7c+uDDnx+au2KqWsRO+r1A2vC5H56lK4KzkRn1qpLq8yppNmZcVCcvk5vS/vcnXG+dOs6d2wRERHxY4G42SMiFgTzDYQZqtnLBxSwKcEHABjOdxKBvPluQJKkOI477pM5wIYlK36mKyqmiSc748yZZKKD4wpjNSE5mc4RlyTOtEIiYUai9J4LHuF2Ty3vmLpqpp5sLOIvFxx/PXnGdXp2GfDneqLj9WL8+Yqa5Zp9O48VatsnmfOkbokhHq6p6dDz5F3uPqrjJeKMTseqPys19X7zKaoGU8yZmTcVEsHG1vLrpm6jpP4h14Yrps6YzZo6b6l77j7lE4O93gYlXVeJ2yOFul4rtY8ThfGjSKZn5Ipv9oiIRUHc7BERC4K42SMiFgRz1tkDCuMUyemyI6+oTSGogOXtLjQ4va1tx5FAt0UMsVmOCAS7G9b1MmcihL4diBCnvHRONy0BQH6i7Uo7Vpdtrun1KstW8WKiiDJF/vmUysdk8jruWx2YdXZOD112TIlt0ssrjkjyqKH6Kwf+HTgiDibf8Hzw7CJbybRd3eVp203VbfUnV94wdWwu3KxQBFzndBMoACznNvqOzWZdMm1619wrx6qLfzl70tSx23Fw3+uTns5poP3aZFOz+JTQVJfu6hizlmlmzoK8+fjWWdgUi+eobnpVRETEjxPiZo+IWBDMP2VzZySaeTHH8MG7tLjMsy0kLhbqth2LMD4qiLgUDOeXBNvwFv82AKRtay9JyGQnntiC+6AU097kImRu85a9IYnxRTK9PbVizWsvHWu0HIuYALBENplLuUbHeZ65Lw8fn5Q3Kzb0eJWIHNjsd1i3HPhFkj9Xi1bmZI67w65+z6er4pRXBz3b/6NL6inI97lbtO36JJ73vWsZgYlDvCrQpWi2bzrPxiXip+MoPQDoU1SjzIq6pK9llmoPhTrX6fpIu259U/9Jz/EejtvOWpfxzR4RsSCImz0iYkEwVzE+pEBvaSRKdf1p/JKKH4OKFUX6NaprmDw6ph2LSj3LTYAhBRUMShR0I9OzySZlJ2eT3M1eT3y6D1hPvu6yvZdiRfWXlYoVfY+gp901OlW+VLKeZXzyzafvAFCgG8ip/GhuU02dW1LZseb446qUgvQaUT13mla83Rad5NVz9l4er6gK8b0TZS0TR17RJ9Wl44jV3l7VdE03uurZeK1gvdiOSBVodJ1HJJ3o87XTdEreJgDNI2t1YNVjqWotKF0iIwkNjtiyfYqho7Z1aYfVQ/6SbcfTExyxyi3txf+dEd/sERELgrjZIyIWBHGzR0QsCOZMXiEIY733tvQ4HFBWcfYq0n/6IF501wd7JvVvM99Rd2T+6jsigc4Mfm/TB9vN3E8mm/04imlUSaZDRyjBejR7nTWHVg+9VFYdvpL4FFJ6JnA8VN2zJLbdT6xM5QhF4baHM0Jo2eXSons5WbWecUxEwfdSdKYrJux47WQD08BjWilavblFprKmM5sxMUe7rXWe+JIjEIduTfR3dR4bLlIxL1I0nugczEoT5R6n8fZkHvqBW3/mbMituXTsQXc/eOMjIiL+nCFu9oiIBcF8xXhRE4H3DmLe+J4LFOC0OoECRHpL/gLh1CLgAmFIHu85bm4WlW7jySNJ2GTv9CYSliRdXZ/MOD545Hy5fmrddsfe6PmikkaspNbktZSoiNscqljZgRVvnyyrKW6/b8kxWuSttlzW/uqpbcd87QdNa65qkv3xUulwUr65ZDncXt9bO7UMANdP9L6fXFNvugvlY9OO58oTfTQpOGVwrGMKbfueG9ZIvUidqL6n99nJ7H2uPazkG73zOlf9jm3H5ra+Mwt3VrXMXqDMywjYNewx0d5mUNHFN3tExIIgbvaIiAVB3OwREQuCuerswxRor49+X3oV5+7HVoWW06fIfBUyLrsLsK7lf8aIx5v790QCzCPpPSp9mlztxLVj9djpWZwDbL9ho7eY0JHdPPsda09ZIiLJYtGGDz5UOJyUd/qqH58MrA75ttL1SfnL9beauheOz0/KbBor1Kz5rr+nRBz1piOl6Kpi+s6aklKco3MJAHilrxF8TAQBAJ2g/b9OCuvGlo3SW851PnrO9jSg50sBZcgPHAkFmeWGF61pj9N/S8+tW1q4q8sazra35cbR0HvjNQzArFWhtVlw+ROyOuc+sF3cInXx50xTLnM6ROQREfmiiHxXRL4jIr8y/vu6iHxeRF4c/792p74iIiIeHM4ixvcB/IMQwjsBvA/AL4vIOwF8AsAXQghPAfjC+HNERMSbFGfJ9XYdwPVx+UREngdwEcBHAHxg3OxTAL4E4OMz+8qA9vpIFLmdXILMawUn+xYocimfHq1kRGZn1gpTPtzmhcfWO/9TGE5vd3uEk5a9J9WATD5Nx6G+TXxslaKKzN6aslFUMbaa2BCqh1I1SzXI9MZlAHh3fmNSfi23qaP/8Oidk3KLxPOVZSs+75MpaziwYusLh+e0DzLlZVO88wAA/ekpk46PVQ15pWI97XxqK0aN5rF9jnjscss9mJzoVhg6go3uOpPEuag98tArEGd9dcXK2Z2izgFzDQJA4NRQpG56kZxF9/zImQdPRnNwz8grRORxAO8B8BUAW+MfAgC4AWBr2vciIiIePM682UWkBuBfA/h7IQTj1RBCCLjt/Tb53rMicllELvebjdOaREREzAFn2uwiUsBoo/9OCOH3x3++KSIXxvUXAJwaWRFCeC6E8EwI4ZmsUj2tSURExBxwR51dRgnPfgvA8yGEf0pVnwXwUQC/Ov7/M3fqK6RAd20kAPh0tMMy6eVlGxmVks7uo5VMH6Q/DTrT9T/OF+c56s14/eywZa97enl0MfqKYw5JKjquYdGOkfXSfk3r1hyjTUID8br43kB/UNn09oOO1XPfKKnZ7+nSD0xdlrxvUh4cqa7ZLtmDlnRJzX7+uWzv67X3jnVMP7FlyTPZXLXvzaBkpuQ0e4fONZfzwPlxLBHjz4VVVYJ3XE64OrnBijvvkZr274iNMKQx94jQ0jPyJGTH7XftmUAgt+OM8rkVD+w4yjvaR2nfjj8/Ho0x6U/fH2exs/8MgP8OwLdE5Bvjv/0vGG3y3xORjwF4HcAvnqGviIiIB4SznMb/F0x3r//QvR1ORETE/cJ8CSezgN7GSESXoktzTF5FiXNdCyQq+Ugx044lGEdAkFBUHae7TbpOZJvhgWR+8lik96l+zEBs/9316WPEkYrknLV6s2YPNjMiED9wEWuviZq8tnsqSr/eXDftfn/4zKT83yy9ZOoeWT3UIV1RcsfmvuONX9GJHPSdx9hBker0Zl4t2Am+uHKEaTg81uuxuNx2BBVmTAWrArKHW5G47Euu3aCm4n6/P50BwovnnD66152+nVh09yQg2bHW5Yc63tKeU0muEn/9riOfH6856U/XS6NvfETEgiBu9oiIBcF8ySuSgLQ6lnlneLj1OnZYgT2r6FRd3Il7yieZDSfG8+k5SXDisl6ySH4rM+ak7TQJyQe7cDbZkmvKQ3ZzkNGYe0fqnXa4ZE+fD8oq3nq+uAFdoE1uil3n4fZiXYNdzucnpu7RinLcfat6cVJODqz4HIj7v1S2JonmTb3xwrGOqV61qkC2ptd6ZNny43OmWfY27Lr1waK1F7OPiReuUtCHW8rsg0/KxP3mMrU22vosuh3HcXeodQPy7syqVrcLPSZZNFVmDRZIY/Mn69Iji1XLek6Gwp23cnyzR0QsCOJmj4hYEMTNHhGxIJhzymbB4GSs8wycyYtMK+LMYSkRBrBOXajbdpz69jbPOCbHIF3Im82YCNPr7Jwml4kphwVnXqPPfaezJyYKzuf1pXGcaN1J3ersN0pqUstdTugysWIW6XBio2hNNTfbSuZ4jRkPATxZVi+39U3V5w8PrfmOyTMf3bT69ksljeDLbpBn457Vefcuqg7/1Kr1rmOyS9bZhw27bNt0ptPNbR3ndOtQ6mVvojtpaf+ZM/1yNFvbRSryORHzgwRHzsLRmsGt/SGRqPI5TvHAPls2q4WiOz9Jx8/C5wEnxDd7RMSCIG72iIgFwVzFeOkKStdG4scsTvbbPNJIqjIplXvTTWO3EU8QjOnNZ5qS6SL4sKqdBs7O667VXdE+vOktIy7wwYwgnIw8/tp1+5gOKiovVgrW5FUgsX4zV73mYeJuB4CEJuvE3WiNXAyf2boyKf+HI+utxymTnl67aupuPKRqwuDa6qScH1kxc3tXVZILVcsHv1VRFWK/pNfuHNv8SSwWD4/tXDElXYM4OrwYz95vLReosrqm9rCkYB8apwI3AVDu2ZYqRKIR3Phbej1eL56IQmjBDKtWnQjZaBHGlM0RERFxs0dELAriZo+IWBDMVWdP+kDl5kgPmWXy8m6pg8LpOjCnuvXf87nkGP0y6XhuBjidrkmRC6ubs96fOJfbvrWUGZS3iVgzdemiiYybPWmlbXXIxolOQtMRW+x1SLcd6M29a+kN0+6hourHrzYtscW1rg6E3XEvnjs07dp97f8tJUtU9MS6UhI+v6SRc6UdZ1a9pvfy2oo17b3n/LVJeWtF9fcf3HQutyczotSo3KsS6WPNuVpT1GXfueOy+2ylajnlT4ggkgkzE29VJTder/ezm+2glJxaBoCkrQstFFyUYXl8bzHXW0RERNzsERELgvma3oaautZH9LBYH5xUxmJxb3m6CM7idN95MA1YPGeO+hliT+ZS5nJEUtqhPpy5g1NJF2xAGcq7JLLl9nvtDf3t7S0TmYdTE8Ku3sx+zYq0NeJc22urSM+RcgBwsageb0e51TtYrO+T7YrTUwFAkSLHXmxZJnHmyeuva7tB3Xp+MVnDwRsrpu76kk7eekkn//WStZcmhzPeWWwOa+q99BxBxVJFxfOhTxlO8KQX7ZJ+NuK/i75jQgzPkzcokgpR0brOih1jldS+5Nh6RCb5uO2stM7TqyIiIn6cEDd7RMSCYL4cdKLiNJ+IA/Zk2nuuMc2aoaCekZ7Ji+cmEyeJaS57EjIif8sdPVrxiMgD6FqtTX8xLZb2p3v5uRgWQ2IwWNJKadsbZTKIxo4Vz4/pdL5K3nU3O0um3flcT+Mrjgv7lS5lVqWT6KIjfGj0VJ240rJ5PftkumAih+6yXXLFfZrvPSu2vrKj6sTbt/S0f/WczQR7XF+dlNOmW1csWdNzrzfsIqtUdCGkLhCGT+O9+C/kRWg8+VwqKxbdPcdiRtTp/WXtv/mQvdbymqpb+c6hqUvH8yj96SSK8c0eEbEgiJs9ImJBEDd7RMSCYM688UB7rN8Oir6OiCG8Q9QUS4gJ+odN9cz9AYAQAQbrdUnPeXSR+mr534F+iT356IzBecyxru89+SzhpP1egawpLT5/KFsdLxBhQuqivHaOlDSisK4DqffshN/oqJmr6G17hP2Wngmslqy3HpviDjr27ID5/Qu59t9asjpl36Q+ss+iRecR+ytafmJtz7T7FunfgxtWF7fRiUQq6SLbWqLnD8Ed+ORFvc+BJwklYgvDueKfLc2BJ8cIVFcnYsrOmn0Xn1zSZ7hxxR1sHYyf9eAudHYRKYnIn4jIN0XkOyLyT8Z/f0JEviIiL4nI74pIfqe+IiIiHhzOIsZ3AHwwhPBuAE8D+LCIvA/ArwH49RDCWwEcAPjYfRtlRETEXeMsud4CgFu2jsL4XwDwQQB/Z/z3TwH4xwB+c1ZfwwzorJ/O2MBZVj2hxHS+dmdmoe/5IBNLejF9jOxp5/tgXjsWDwsu7Xx+pDJc6jK8WtOblfX4e9mBPhr2QBt1wtd2XngNugGKK+k6d8Nr7dVJ+XzRuvnVMjVDbUPVgp7Tr2oFbbfbtMQWjQ7xqQ+mv1M4sClzGY2yI/3e9T1VO8pb9gHWKDjl0Jn2QIEqQiJycNfiGQ7Ogy6jlFVeBDepooTNcM70RipEmtg+clIF+lXtr5tZ1evkUQrIuWmDl8rfGc/B3XLQiUg6zuC6DeDzAF4GcBhCuDVHVwFcnPL1iIiINwHOtNlDCIMQwtMALgF4L4C3n/UCIvKsiFwWkcuDRuPOX4iIiLgv+KFMbyGEQwBfBPDTAFZF5JbMdAnAtSnfeS6E8EwI4Zm0Wj2tSURExBxwR51dRM4B6IUQDkWkDOBnMTqc+yKAXwDwaQAfBfCZO15NgFvpx2ZYe277CTIJkA1Bheu+SeQBrv+U3GJnElPSxXz/WZN0arKNZR2re6cdvoAbI6trzrRXIQLNQa6624nYx2Ty0TndMyVdv7E13Zx02J7OsFGlG3+oSrzxHfsddgH1emirqfomm67giRvIi9e7onI67e6e9nclXzXt1ms6Cb11ax5s3NAXDOcZCIm9Vp+53DNvctW2tbLLscZl0vWZUx8A2i19FknF9pHSA2VTXseNg3npTx61xq+sMYo6DEfT01mfxc5+AcCnRCTFaBv+XgjhcyLyXQCfFpH/A8DXAfzWGfqKiIh4QDjLafyfAXjPKX9/BSP9PSIi4s8B5pv+CbfF9E/A4vSwMKURbGRY2raiaTLDvMafp5ryAGNe895vLLoXD8kc03Zpeji1rjOvMfe3nwvp6s3lx2qT6tWs+MzkGD7NVYHMVfvE836cOcIHMgV5z7icdKA1ShvVdzpPNVNx36c5TlK93kpV+/fEEN2miqM9y12BwiF511E6rJYj2wgkxm/W7CFwo6Ced8ZDz1tVM+J+q9q5GpKIn6W2brlEZj+qqzeth9uQTHHDGYwpBepj6Dwnh8Qv3zrnPD/HKtbge9OP4aJvfETEgiBu9oiIBcF8xfigYrjnmUMyQ3SfksVVfCbYGfxbJiCCpTknBqeD00/cASA/0cb5sQ4kbdhje+nQIH2Op5Q8upqWlni4f6j9r2hapOJTj5p2Pa3CMJ8uEg46xHvmTsuZoKE3sA8jpYlkOurcmTgafRXBW117CpymdFJP/VVKdq447VLI7LuHuQIz8hQs7Ntle3NJJ+QtW7umrlDjyCYdY2Y1F6MauWVlvOGaHXsKXinos2ZPuOS29UwZWJ0Yz/Of0vekbOd7SPTRPq3YraCZMGNHxzd7RMSCIG72iIgFQdzsERELgvnzxo+52IfO0Ye1GPHeb2Rim+X9ZlI7e/Maq1D0PXEmukJdG1Zv2Mp8V008yT5FivV8LisOiZs+xeHYEieGliqSIdcJYqJLAGiSdxbzjAOOS590w3LJ3QtHWrmJPCGii/ZgukdWQpPnTVIt8hjjCLhq0ersg5qeWxz3HAFGkcxhfSIfcSbX/q6O92rR2u+Y3LGzQfO469I/dYiYpOPODkiPbjRtJBp7DnJEXO745bs9fTA+CpDPO5iXvlixz6y9yWdXLu3zjGi3yXfu2CIiIuLHAnGzR0QsCOabxbUHVK6PxQ0vdZhol+l9GBNJyZs3SNx3qkA2JV2TN68V6HPScZ5x5OGG/oxIHp/CkxAaJKq3rP0nDGmMbQ2WKO3ba6VkUusumyrDN1+oqMjsxWxGp2+XQTtTsbLV13LBEd0vlXSM6y6b7EldvdyYe/7RpQPTbj9X0b1ed/xxtA7YDOfF+Iw4+VonzibFvO4rxIWXW3Mje+iJ4yUUMpeyORMAuiWdu4wCiCpOXclmeNd12jrHnO3VB9OwpD4o+yCZUeVtgV2E+GaPiFgQxM0eEbEgiJs9ImJBMFedPWsNsfmtsW7nfmaYIGBQtpWdJTI1VZm73fZh0hx3nHmGUjhn5KXqyS05jXJvyZqdkq5eMO2p/ictlzCO9PnQtLpbaKj5bth1JruhDiZQH/me1Yezhpp/ho9Ys5xwOmNSetvOnZVNb6k7Y2A9vdnTcrtrTWM56aE+nXOa6bjqB/q9q5VVTIU/ghmcXhecK2pKJBe9vjvw4Wg8+lp2zs5pr6hzmjScrkx9hp6dK+YfGVBEXzW35yxFmquWc7nt0Bx3Olr23PagHAEhtXPQXR59jjp7RERE3OwREYuC+XrQtXsovDDipZSCFSsLK8pP3l91XGck5gzI1NFZtf2H8ypKStGKUe26ik7pId22T+dD0l1WdCJhwqY9ErmbzoTW7VLZirehT5/D9DC9QGpCumtzR1d21N525Hh+E+J46zUKp5YBQIirzXOhTyNX6DqOOBb3meQCsFxt7V19ngdN+2yZrOE2kytdbkhqQWg58ZYjIdu2LtB8CHnGDR3ZRmlNdbu2WP3QpMz25BskdnMkoSfz4HTXZWeW61LkX69DorpTGVIyCfpHdCudWhTjIyIi4maPiFgUzDeL62AwIWiQkg0oSMhLKcntsNIicZG12JPK/lb1yftoddmKlXVK4dMa6Olwr2mvVTyk8SbOk6pHojt5wg3rLvlFIJFzRlbNWal6THfHNj3T0isaQLP/DutC16b0QQmd3ibulLpTUbHSB2bUiiqC8ymyJ13gk/o1l5XXcLOtqNgqjmGkSIEfnGYJALo5qRcswjopnjP2pnW3JlboeiyNH9gB99fonlcsqUgno9Pzvu1/wFlXSaRvOI9FVlequQtwIartFll8PIsGi+g++/AMWjv9zp2bRERE/DggbvaIiAVB3OwREQuCORNOBtVhu86zjKK8kq41myXMtc4pj33q5RMyNa1axY65y5kMsAGbf65Q1ynx6ZBNNBub4RxBhdHTvc7O5rZZOjvp/cOW1SHTa0qquPpCzdTtlnUOeH7YywwAOtuqG/o0QzeozCQM7brVczl+7VzZnluwKa6xSumbnUmqQOQPVZ9aicxcvWNKZeXTIpHCetuMsuddkdZRy+n2LX2GS867LiOzX9PNAZvi+uTx1nXnTsVU53GrbM9gmADjSpvmquk8+Zi4xd/oLLbVMc78Zh+nbf66iHxu/PkJEfmKiLwkIr8rIvmd+oiIiHhw+GHE+F8B8Dx9/jUAvx5CeCtGP/Ifu5cDi4iIuLc4kxgvIpcA/E0A/yeAvy8iAuCDAP7OuMmnAPxjAL95x87G4il7iAEASFT1gSXSPz3jqM/UakgMOtZjjMkElsp6reGmlYdaDRWLs6b9LSyvqPBSWlEWjcSJ4+xRNxxa8WqmKY4gbPYLzsONTH0rL1nxuVerUXm6mpB0iZDBSabtXEV89rTz3P5ssksc6d/D5SOq0+9tN5cwDedrlpPvXFXv7RpxyzVgA3I4cCVx6orJLVClBZO750DieOru89ySjuum86Bj1WZIZrmeI57gOVjNrZowJOVjr6r3dnLi+P/42k5sn5CWpNPF+bO+2f8ZgH8EZbrfAHAYQrg1e1cBXDxjXxEREQ8Ad9zsIvLzALZDCF/7US4gIs+KyGURudxD585fiIiIuC84ixj/MwD+loj8HIASgGUAvwFgVUSy8dv9EoBrp305hPAcgOcAYFnW73xkGBERcV9wlvzsnwTwSQAQkQ8A+IchhL8rIv8SwC8A+DSAjwL4zJmuKKcLExwpJi6KLGmreSzpkz7prVrU9cBFaLGmxfm5nOUN2+eJuMERA+Zk/kk76qZacDq7EG984nnjZ+jsgfPCcTvff6Z9St2a5UpEFNGrTs8NxnOXOoFLyAWUI7lyxz3P6ZcbPav4D+lhrOVqhsucbs/66lurO6Zus6Amqn+Ld03KLxy5qLS63qfPF8DkkaxTF6rW9NunaLPjhu3/sZX9SbnRtUan1rGb2Fv99exzr3d1fgYV+zzLqc7rOUo5fZLbxZn02G3cEY6sjzXqGdbcu3Gq+ThGh3UvYaTD/9Zd9BUREXGf8UM51YQQvgTgS+PyKwDee++HFBERcT8wXw86ESPiTkPouBTIPeZVY/53+71hgaKfXIpiJg9YIdOHFyubS5SO6LwTxZrEoU7pjZKONQ2aO6w4kZNF9aHjj+uffp+ehz6U9NrDqrObEXrkXNfZtNdijr780DMhULsZ6ZaPjlRleOPYRt+tFHWOWYx/19Ibpl1zqPfy3urLpu6pgnoK/nHxLZgGfu7iovtMhByZG/uZfbYJeeV1j1xE3EPayaWlQ1PHIn+3SV5+Tp04bmufRz27Xs4XVV15tKZ+iVfKa6adUM60zAZ1ovzq6NrSmWFunVoTERHxY4W42SMiFgTz5aAT0aARJ8LOSpnEGBamU0kPy9pnyREh9AYqivFJ8VJuT7O7dILdXrUeTJ11na72mvZRPLAntNLzKWQJ6Yzj0sEUy6T7DvPwebrrYUanz1y1YY/cOXgE7nQ7Jc9Bzj66VLFzNawTWYMjwMA5La4WVKS/lO+ZZjf7Nusq4x2UGopP6r9Ve9i0a5OXXD93c0jecGxlgPNOG1R0vUjRrp2bTdWHHlu26ase39ST+ld3NiblXtturUZLxfi9tj1lf6SsfRZz9darVuwzq2c6H94Sdctw4f/OiG/2iIgFQdzsERELgrjZIyIWBPM1vSUCKY/1w6HXrYiAILc68KBE6XGWidBg2fVRnK6wMBc6R2itFKweyqamujNr7W7ouFrnKAJu304jp/+FI60cEnnmMLW/tUzSEchrzhNfDooUXVWzfQzJ1MQc+H0XDVUgU+SwYHX2jFIiD0gfftTpq/srqnsGFw1WIq+wt5S2J+VqYs13W5lGx+VO4ewF/fyXqq9Nyn+68Yhp91JPDwh8SmVDEMnWTGeiCpS2eli14zhp6fzsOa82JqIYbOq1rh9ZUyR7G/oU2a2BrqUypX1eKdu1eVSh9eFM2LN09VuIb/aIiAVB3OwREQuC+YrxaQZsjL2CvPfYkD3jnIiVsdhKImbFyi4cL9JuWVXgmAI62JuuVrDmjfNFNX3slazI1iJTXPOCilHlHUdycZMCYfou8INE90HJieDEzyZ9Ftn8fEwX8dk0af7u+M4DzUdvxY4xJTG+T6mJMueV+Nh5NTv5tE7doX7vaKB1KWwf1UTn/3ho1Yn/1CZue4rweKy2b9pdK6v5rt60xBbMvc7ZX4eOF4JJLjw/XatB6lvFfrFPz/BCRVWSambVFTbf8foDgB6ZgnkWz1csV93VW3sHQH/Hzndpd3Rvs6jo4ps9ImJBEDd7RMSCIG72iIgFwXxzvRUS9LZGJomk47jhm5Ru2ZNRkh5CQVIIudP7WSdzJph6n1wN6e8bJUvYeI7cFX1dm0wmjarqTK1Ne63asup1+YHV3RJypZ2VXpf1dK/b9yrkzrpkdfR+lfRtUuvEkSiWKL/YyYYjcjjS8QeKFLvpyCLPlXWu2B0ZAHZaqqO+mqtprJlbc+YKhW9VnFnu1c75SblIJPhPlndNu6/nlyblujubMEcEFB0XCnY+AunsidPZw6EuuqOaPVdYL1MEIj0zfxY0JMIKnxK7T/bSHoXpbRbt+ttcUx1+v2rHUXht9L8n72DEN3tExIIgbvaIiAXBXMX4YZagvTkSe/Ij+zvDA/HeTex1hhmmhSwnr7DM9j+g1MwtMst5kYrNS8x9DgB9Mo3tL6lZrrfsouNWmStsOlnHsOBMbzmJ7lRmsX3Uv9Z1XdBYvxaorKbJUtGqRueJC5059QFgr6j3xubAo5YVHVcoYnC5aL29DtuqQxz39HtLmUuHTKa9lcxyD+4S+wZ7Nv5E6YZpx4QSO0XruZaQSjLkNMqeX52XmBPxeT3WD6xp77iqakhe1jm+2bIqD5vl2CwJAA3yoDuiuXqoZE1vD9e0j5vnVk1dd2nUxyzVML7ZIyIWBHGzR0QsCOZ7Gp8CneVkXLaX5hPnpDt0ddOpghlFElWDE88bHSavmH4yWqJT35JLE3uOAnKu11R8u7lsRbvmeRbdHbEFjb9fdKeydHrOIn3P0V33VlTM7C27CIiyfq4sq8j8lk1LGvEz68r35lM3vbD+0KR8rTmdXCKnzKTLqZ0rfzp/C35O6309nT9xbCQcIHKjrWLxftdNCGFpzZKz1Rsq1gtZFkLZzRtPgZPwh0SIwbTVALB9rKrGJlknjtr2XlgFXHGEKUyn3ehNz4/KqkxxyZ72Ny8WxmOd+vX4Zo+IWBTEzR4RsSCImz0iYkEwZ9Mb0Fkf6Se9mtV9OJ1N2nXeTRTONktnzymayAWDoVUgnncyryUuTKiWqj5VcIwAbQqV2iirbrizak1XrYdUX/Peb3xE0Fuy1+4vkXcdEyBm9qYzSje8XLbXrpVUl7tIppr3rb5q2v380rcm5XX3k3+5dHVS/nLprZPykUudzZ5f+117bsF6aJ1SQ73a3DDtLpUOMQ1skuJUz68c2D6KBTo7KFldtrGi8xP2yXvPBwcSb3xSn5H22aF1oHPyA8fzzthvUFoud55Ryzun1vn01pWC3sty1er9u+Nzo1mmt7PmZ38NwAlG6QP6IYRnRGQdwO8CeBzAawB+MYRwMK2PiIiIB4sfRoz/qyGEp0MIz4w/fwLAF0IITwH4wvhzRETEmxR3I8Z/BMAHxuVPYZQD7uMzvyHAJAmr43wflEhUdyl8WOQy1hnnBVUicS514nlCgSApfc8TMnAwxlJiPbrqqV78Qvl4Ut5erZl2O+StFxJvYqTrrVoz1Ma6mm6eWFVTmVc1mn1SSZydaJlSW/1EVbnfnixum3ZN8uKqiB1HhQglWK3Z6Vqx8gcNFVtv1m2d0Jj7ub5Trp1YU16B0lKt5zbwo0H3yem8BkP7jto7UlNcyWWaLVO21kaLnoUzrwmJ8V4UTsmadxs5xIH2uVtQM9/ahvV+yzNVvZpd63FZSE8nkKt3rB2tQd/zpmUsjde+9wwknPXNHgD8exH5mog8O/7bVgjh+rh8A8DWGfuKiIh4ADjrm/39IYRrInIewOdF5HtcGUIIIqcT4ox/HJ4FgGx5+gFGRETE/cWZ3uwhhGvj/7cB/AFGqZpvisgFABj/vz3lu8+FEJ4JITyTVaZ7PkVERNxf3PHNLiJVAEkI4WRc/usA/ncAnwXwUQC/Ov7/M3fqa2R6GwkAieOnGBLJoeMwMBiUSIDwmYZJlxs6QYN5uzkbMuu/gCUP8Hr/gJS5It3AWsnq9gdVihprWDNLyE4/OwCAjHQ3TnNcdJO1L9p/e2AfYTHRPlZSHdexc0X9TPM9k3Iv2DGyyfG1lpq5/mzngh3HtdVJWXr2YeRbOn6en27fXuvPdjVv21bN6rmcTpuJMvw5y5WujqPbtfOxuaznAIUtvS9ONw3A6PA+6k0454C7z0BrZFAncpOKJek4v6LjZ1MbYO+H3WpbPavbt0hn94SqZ8FZxPgtAH8gI1t3BuD/CyH8kYh8FcDvicjHALwO4Bd/6KtHRETMDXfc7CGEVwC8+5S/7wH40P0YVERExL3HnHnjAwbrI9PIoOuIG5oc9eY8mEiKZTFeUivOsZjTdymEh20VH7vkEXXDmYxeqGjEF5ykx+Iuc32nTqzMKF204+FAdkLRdx07xhvN9UmZUw55cgm+t9Rxyx2U1FTWGuh8MIEEAHz/hvK79XtWtF5dUdG3TObMoxM7IdkxRSM6taxLhB79GXO1f6AqycClkDpX1XGwSfFS9dC0q3dVpGUzHGC515/a0rTP//b1d5h2zaaK3YOi4/on02FiJXAkZCZmVabbtiJ4b4nE876t4yg4Nul6dYXXavPYPs/QHD+LyEEXERERN3tExIIgbvaIiAXBXHX2JBuisjrSvbzpYFAgXbbtWE44XxcxjBRy62bYI7NOz5lg2EzH6YUbbTuO3Y7qfE+U7TiWyHW0nqqOV3F5vcqkY3cSq+eW9vT3Nbd8lkDQMfcpf1nDpy8rk7nHuR3vVVVpeyVTp8ak4aMMdQ5c9l/s0/wvbarenGV2vjvEkpM2XHQfMQNxxFfi9FDOQVdvWnMVR7Bx5JxneuHovr1D67rMXPcf2lRfsCUXHdfr6dwPMjshfZpvbxbm86WUDmh6Tbv+muT62nBusHv8gMnv7F3Lb5h2lyra7qvhUVO3e3UVd0J8s0dELAjiZo+IWBDMV4xPApYrIxFs6CKXOiTOhdR7MNEHKnuTEZNHBmfGSVjkn85FYPrw5BXrmZe7R2j0rfi5VlEz0YHjMS+cEPHgqzZCKz9wdp0x+lVnxqnpY+us2HnskoknIROduxW015l73s03ifEs3hZza19Lz6mI3yw6fYKeZ6uj439sw1IehA0dx3HdpSHOdH7aZEbsu9ReywUV64su6u3mvs7/n64+pmN33pEc2iE+coy8HvtOpaIM3Mb8mDTtczk51nsrVawu0GnpvT3fUdWLCT0B4LGKpqp+ZNnO435trH7eg6i3iIiIP+eImz0iYkEwXw66oUw8w1h0AQBQEEHmRCAWjwKldRr0XIon4m1L3El9Sl5tHICSOi88Doypu6Puc5l6Y/mMo4wqcYVlNStWhlTvO6vbunSH1ISBjist2MeUl1VtyDetXMkifnFHxdvuuuMxr+g4fAopoRPmAYnjqfMsM6Qay/aEvENWDg5Cqrrspo8/pCQd//WNx01djzjuOCjGk3kw6cVja1a8fXWoXonfPVARueCsAkxukjjOv0GBuAG96kjL2AzLqYqB0oB1M/s8mYiie6zP9pu4aNod0LOuOgtQrTaa/ySJYnxExMIjbvaIiAVB3OwREQuC+ers/QSNMc92cuz00IPpnmWcHoxzWXUc4XmH9JWhJxQkHarAOrXT3Tgi6aBn9eFLuepdbfJ2O3GmNyYgKDle935Z+wyp+60lPT20SbdtWXIMaerntGK9sdImkW5uH07Kw9xyrQuTXnh+T/JY7NW1/6Y738hIt60U7fkDo0umtxMXffdEVXX2zZolnDzp0NkEEXuspnY+aqnO1duWbpq6A0odfVDXuS+7SEImNPGW2bRKqcDdOZGQJyJzgAxLLvyMSVMb9rxKipQjgM6aug37bK8mq5PypfVDU3crX4CPKmTEN3tExIIgbvaIiAXBXMV46QnyN0YiTPHQpUreo3S0R1YUEZKxWuvk3VW1fWSUTvc2sxyZf3opm+HstRpdNr1Z8bwx1M9H5ErFQRoAcNRRUbXvONeEmg6K7reW7jO0yZQ18GmZtX9pWfFZWPzvap14vcZ8aUYVpeXqlexyqZSUZ66aTyfYaDd1Tm+eOI79in4uZ/ZeDonAIyEvtpoz33WIA7/sUkdzkAyL8ScN5/HnedgJSzVVG068591+2TcfD9i1K+kzDC7QK/Ba5a85L1AO7mo6fjrvEXjqkO7YIiIi4scCcbNHRCwI4maPiFgQzFVnT9vA2vdGukVlx+pWxnXUqR/9JXIxLRN3u9P7Q0afnQWiX2T2Ci3P4t/2ZqLdnhIhMJlj30Xw1duqmPvIvIQIM/subTWYNGFIZjins/NdS9fp7H3SDXtalx5bPTenKKx2251v5EyiTqYlR+LJZJdFF6HFJBXDrt5X/dCaM/dXlSxkq2R54w/bp+vDPr8d8+pvFY5N3fqqmvP4bOX1fZudqNXQOp/ciAk/V8rWLfiN13SMTGQhff8ePT2fGwCAiEelN/39O6D59u6+tyIEvSsxI77ZIyIWBHGzR0QsCOYrxneGWHl5ZK7Jbjo3ORI/hyvWPMORbmV1uIIEO/x+Vdv1vQRIkW4cZTQcWFVgQKJq3+XubZL73jFdoN61prcOmUh8/4HE+G7N8bZRNJswMVyY4Q4orn+OkCOPvOSobtqV9lUlaVx04+C5yrUPL95yKqdiZsV45ptnE5Ic2We2fU6f9X+78ZKpG5LC8vLR5qT8g5O1qe3eUrIpB5fI2+4vrFyflL24+9JA+++6iMzeQO9zpWjFeI56S1lT8mnHh9NNeymZN007Z74bNnUcB027wB9acsT9p+BMb3YRWRWRfyUi3xOR50Xkp0VkXUQ+LyIvjv+PKVojIt7EOKsY/xsA/iiE8HaMUkE9D+ATAL4QQngKwBfGnyMiIt6kOEsW1xUAfwXAfw8AIYQugK6IfATAB8bNPgXgSwA+PrOvwRDp0UisCid1V0knkiV7Ql7YU1HSCFhDm7qptUFi8Kq7+LRDSk8ywCK+86oaTqnzp/FM1jB0p7IJSefeA3BYI48xFsf7TkRjsd4F04SSzhD3Huo2yCQ/0hPmxHljcaZZqei12YsNsFPqT8g3y3q96yVlxyhct0tud0+fYe8Ra524UCTvt5Ke4r+0t2nanZD1YzO39/lw8VDHSKL7k7Vd046f50s3bf9MN95zHpFDJvQgD06m6gaAXpG+53jiOICGkvDetmQ5QOl4z6a56o65Arv96Vv6LG/2JwDsAPh/ReTrIvL/jFM3b4UQbilBNzDK9hoREfEmxVk2ewbgpwD8ZgjhPQAacCJ7CCFgyrtTRJ4Vkcsicrk7aJ7WJCIiYg44y2a/CuBqCOEr48//CqPNf1NELgDA+P/t074cQnguhPBMCOGZPK2c1iQiImIOOEt+9hsickVE3hZC+D5GOdm/O/73UQC/Ov7/M3e8mgjCOM2T+JxD3KztyBxPGqe2y4tW1ywdMImi06NJZ+qTSUNyRy7IprehHSN7anmPsalwJhc2a/Wc6a27prpnuaT6e3BecuhNv/awrHOQJuT95vpgj7q07X6EacgZkSn4MwzmlG/07TnLCqVYLpb12r3cRZud6Hi/e3LBVL2tpkQUb6lpuuWdltVXd4/UfPcfX3/K1F1cU71/q6weetXMehT+5KqmWiq5yLnXDpW00qeoCmVdP4MSkXM23XMHrb8V601n9P4znpl78pf22AsveJMf4ax29v8ZwO+ISA7gFQD/w3hUvyciHwPwOoBfPGNfERERDwBn2uwhhG8AeOaUqg/d09FERETcN8zVgy4IEPLRJRPv+UXmJcO/BkvkIPS99MiK98UDFUfzdS8O6ecOed4NlqxI1SfzTNeJ8ZwOijnNey5AZMDBLx1bx+aTgYvB6ayQR9qGpi3yd2KJLawaEmh+hFSB20j5KLgmc+emwqIgzUfmiD4K5CVXSJxoSiJ/KVexuOVEWCE1542GJbBnMf6pspYH5+yMfCt7eFJ+/abl2nvluprR+lv6va2KDbp5qKgBNO9ff9nUceqpl1tWjM+qpKLQ3+Wm41g8oufi1lVvnVQlylJ8W1AMrZ0zcFXchugbHxGxIIibPSJiQRA3e0TEgmCuOjsSwbA4umTqdHbjAjpwpiUiYTDptDrWRFeokw554m+NXFjzhMouskj0eweOPOG1luqDO2019wRnkmKSBxPRBCAlN8rE3eYgJ1LMdT1/KLi5So5Vh7zNpZJJKyuks7dttBabN/O6y3tG5wzMDb9StXztJYp0W81tXUY6fI3IH05W7DMbELFF27l6cpRhiZIHPF39gWnHZyk+Guzgqp4DvFHQsie3vNrSOK4Ly4em7h3LNybl3aY1+7W6ZP6lHAH1vo3cTFuUy7Bhn2e/Rp+XiXzErauEzlKCf03fMt/NIA+Nb/aIiAVB3OwREQsCCZ4Y4X5eTGQHIwecTQC7d2h+v/FmGAMQx+ERx2Hxw47jsRDCudMq5rrZJxcVuRxCOM1JZ6HGEMcRxzHPcUQxPiJiQRA3e0TEguBBbfbnHtB1GW+GMQBxHB5xHBb3bBwPRGePiIiYP6IYHxGxIJjrZheRD4vI90XkJRGZGxutiPy2iGyLyLfpb3OnwhaRR0TkiyLyXRH5joj8yoMYi4iURORPROSb43H8k/HfnxCRr4yfz++O+QvuO0QkHfMbfu5BjUNEXhORb4nIN0Tk8vhvD2KN3Dfa9rltdhFJAfzfAP4GgHcC+CUReeecLv/PAXzY/e1BUGH3AfyDEMI7AbwPwC+P52DeY+kA+GAI4d0AngbwYRF5H4BfA/DrIYS3AjgA8LH7PI5b+BWM6Mlv4UGN46+GEJ4mU9eDWCP3j7Y9hDCXfwB+GsC/o8+fBPDJOV7/cQDfps/fB3BhXL4A4PvzGguN4TMAfvZBjgVABcCfAvjLGDlvZKc9r/t4/UvjBfxBAJ/DyLv7QYzjNQCb7m9zfS4AVgC8ivFZ2r0exzzF+IsArtDnq+O/PSg8UCpsEXkcwHsAfOVBjGUsOn8DI6LQzwN4GcBhCOFWdMu8ns8/A/CPoHl3Nx7QOAKAfy8iXxORZ8d/m/dzua+07fGADrOpsO8HRKQG4F8D+HshBJNjeF5jCSEMQghPY/RmfS+At9/va3qIyM8D2A4hfG3e1z4F7w8h/BRGauYvi8hf4co5PZe7om2/E+a52a8BeIQ+Xxr/7UHhTFTY9xoiUsBoo/9OCOH3H+RYACCEcAjgixiJy6sikxjfeTyfnwHwt0TkNQCfxkiU/40HMA6EEK6N/98G8AcY/QDO+7ncFW37nTDPzf5VAE+NT1pzAH8bwGfneH2Pz2JEgQ2clQr7LiEjAr3fAvB8COGfPqixiMg5kVGCLBEpY3Ru8DxGm/4X5jWOEMInQwiXQgiPY7Qe/mMI4e/OexwiUhWRpVtlAH8dwLcx5+cSQrgB4IqIvG38p1u07fdmHPf74MMdNPwcgBcw0g//1zle918AuI4RJ+BVjE53NzA6GHoRwH8AsD6HcbwfIxHszwB8Y/zv5+Y9FgB/EcDXx+P4NoD/bfz3JwH8CYCXAPxLAMU5PqMPAPjcgxjH+HrfHP/7zq21+YDWyNMALo+fzb8BsHavxhE96CIiFgTxgC4iYkEQN3tExIIgbvaIiAVB3OwREQuCuNkjIhYEcbNHRCwI4maPiFgQxM0eEbEg+P8BLp2jKkV/280AAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":"#plotting the type of defect or no defect categorically\n\nplt.figure(figsize=(10, 6), dpi=80)\nsns.countplot(x='indication_type', data=df);","metadata":{"trusted":true},"execution_count":6,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 800x480 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAArUAAAGcCAYAAADH61giAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAhKUlEQVR4nO3deZhldX3n8fcHG3EpbdTQaaDBJrIlimlHiCGC4OAWzUJEjUu79CQRkkhkOjomaIzRZALJiFGZCIzO05ElY0RDFjMY4wIIdEQR2QI0o23brEIkgI5Ayzd/3FPmUnR1V92qW7d+t9+v5zlPn/P7nuV37qlb/bmnfvfeVBWSJElSy3YadQckSZKkuTLUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvOWjLoDi8Euu+xSu+2226i7IUmSpGncdNNN91fVLtPVDbXAbrvtxubNm0fdDUmSJE0jybe3VXf4gSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWre0ENtkg8k2Zikkqzqa98lyalJNiS5KslZfbX9klyS5IYklyV56lxrkiRJGl8Lcaf2XOAw4JtT2k8CCti/qg4C3tJXOx04o6r2B04G1s1DTZIkSWMqVbUwB0o2AkdX1RVJHgvcAqyoqrunrLcMuBF4YlVtSZJu3cOAuwepVdWN2+rbihUravPmzfN5upIkSZpHSW6qqhXT1Uc1pvYpwL8CJyb5cpKLkhzV1fYCbqmqLQDVS92bgL3nUJMkSdIYWzLC4z4ZuLaqfifJM4DPLNQY2CRrgbWTy0uXLp3xts9860eH0aUdzlf+9HXzvs9N7z5o3ve5o9r7nVfN6/6e/cFnz+v+dmQXH3/xvO/zguccMe/73BEdceEF877PU3/77+Z9nzuqN7335+d1f3+0+mXzur8d2dvPOnde9jOqO7WbgAeBswGq6qvAN4CDgG8BuydZAtANI9i722bQ2kNU1SlVtWJympiYGOa5SpIkachGEmqr6g7gs8ALAZLsA+wD/EtV3Q5cDqzuVj8G2FxVNw5aW4hzkiRJ0ugMffhBktOBlwDLgU8nuaeq9gWOAz6S5GR6d22Praqbus2OBdYlOZHeG8DW9O1y0JokSZLG1NBDbVUdO03714HnTlO7Hjh0PmuSJEkaX36jmCRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvOGHmqTfCDJxiSVZNVW6mu62tF9bcuSnJ9kQ5KrkzxnrjVJkiSNr4W4U3sucBjwzamFJCuBXwPWTymdBKyvqv2ANcA5SXaeY02SJEljauihtqourKrNU9uT7AR8GDgeuG9K+RXAad32lwE3A0fMsSZJkqQxNcoxtWuBi6vqK/2NSZ4E7FxVt/Y1bwT2HrQ2hL5LkiRpEVkyioMmeRpwDDCSMa9J1tIL1QAsXbp0FN2QJEnSPBnVndrDgZXAhiQbgZ8Gzkjy61V1J7AlyfK+9VcCmwatTT14VZ1SVSsmp4mJifk7M0mSJC24kYTaqvpQVe1eVSuraiW9N4q9sao+1K3yceA4gCSHAHsCF8yxJkmSpDE19OEHSU4HXgIsBz6d5J6q2nc7m70NODPJBuB+YHVVPTDHmiRJksbU0ENtVR07g3WOnLJ8G/CCadYdqCZJkqTx5TeKSZIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYNPdQm+UCSjUkqyaqu7VFJzktyQ5KvJflMkn37tlmW5PwkG5JcneQ5c61JkiRpfC3EndpzgcOAb05pPwM4oKp+Evgb4MN9tZOA9VW1H7AGOCfJznOsSZIkaUwNPdRW1YVVtXlK2/er6h+qqrqm9cDKvlVeAZzWrXsZcDNwxBxrkiRJGlOLZUztm+ndrSXJk4Cdq+rWvvpGYO9Ba1MPlmRtks2T07333juvJyNJkqSFNfJQm+REYF/gdxfqmFV1SlWtmJwmJiYW6tCSJEkagpGG2iRvAV4K/GxVfQ+gqu4EtiRZ3rfqSmDToLXhnYEkSZIWg5GF2iRrgVcBz6+qu6aUPw4c1613CLAncMEca5IkSRpTS4Z9gCSnAy8BlgOfTnIPcCTwXuDrwOeTANxXVc/qNnsbcGaSDcD9wOqqemCONUmSJI2poYfaqjp2mlK2sc1twAvmsyZJkqTxNfI3ikmSJElzZaiVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzhh5qk3wgycYklWRVX/t+SS5JckOSy5I8dZg1SZIkja+FuFN7LnAY8M0p7acDZ1TV/sDJwLoh1yRJkjSmhh5qq+rCqtrc35ZkGXAwcFbX9AlgryT7DqM2rHOTJEnS4jCqMbV7AbdU1RaAqipgE7D3kGoPkWRtks2T07333jvUk5UkSdJw7ZBvFKuqU6pqxeQ0MTEx6i5JkiRpDpaM6LjfAnZPsqSqtiQJvTuqm4C7h1CTJEnSGBvJndqquh24HFjdNR0DbK6qG4dRG/4ZSZIkaZSGfqc2yenAS4DlwKeT3FNV+wLHAuuSnEjvLuuavs2GUZMkSdKYGnqorapjp2m/Hjh0oWqSJEkaXzvkG8UkSZI0Xgy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUvBmH2iRPn0mbJEmStNBmc6d23QzbJEmSpAW1ZHsrJFkGLAceneQgIF1pKfDYIfZNkiRJmpHthlrgVcAJwB7A3/a1/xvwJ0PokyRJkjQr2w21VfV+4P1Jfq+q3rMAfZIkSZJmZSZ3agGoqvck2YneUIQlfe2bhtExSZIkaaZmHGqTvB74IPAA8GDXXMCyIfRLkiRJmrEZh1rgncAhVXX9sDojSZIkDWI2H+l1h4FWkiRJi9FsQu15SU5IsizJ4yenofVMkiRJmqHZDD/4o+7fU+iNpU337yPmu1OSJEnSbMzm0w9mc1dXkiRJWjAGVUmSJDVvNh/p9SC94QYPUVUOP5AkSdJIzWZM7eP65h8NvA7H00qSJGkRmPHwg6r6bt90R1WdArxsiH2TJEmSZmTgMbVJDgR+ZB77IkmSJA1kNmNqv8N/jKmd3O74ee+RJEmSNEuzGVO7qm9+C3BrVf1gfrsjSZIkzd5sxtR+E/g2sCfwZGCXuR48yYuTXJ7kiiRXJ3l9174syflJNnTtz+nbZqCaJEmSxtdshh/8DPAJ4Nau6UeTHFNVlw5y4CQBzgKOrKork6wErkvySeAkYH1VvSjJIcBfJ9mnqh6YQ02SJEljajZvFDsFeFlVPaOqnkHvkw/eN8fjF7BrN/944E7gPuAVwGkAVXUZcDNwRLfeoDVJkiSNqdmMqX10VV08uVBVlyR51KAHrqpK8svAJ5N8F3gC8FJ6n4e7c1Xd2rf6RmDvJE8apDb12EnWAmsnl5cuXTroaUiSJGkRmM2d2nuTPG9yIclRwHcHPXCSJcA7gJdW1ZOBo4AzmV3QHkhVnVJVKyaniYmJYR9SkiRJQzSbAPlb9O6qTn7iwU707qwOahWwR1VdCL3hAkk2A08HtiRZ3nfXdSWwqaruTDLr2hz6KEmSpAbM5k7tHsDBwC900yHA7nM49reA3ZP8OECSfYGnANcDHweO69oPofeJCxd02w1akyRJ0piazZ3a91TVKnof6zX56QXvAT41yIGr6rYkbwT+KsmD9AL2m6pqU5K3AWcm2QDcD6zu+wSDQWuSJEkaUwOPX+3e6PWIuRy8qv4S+MuttN8GvGCabQaqSZIkaXzNZvjBPd1n1QKQ5NnAPfPfJUmSJGl2ZnOn9r/R+zKD67rl/YBfmv8uSZIkSbMz41BbVZd2b+o6tGu6pKruGkqvJEmSpFmY1ZjaqvoO8A9D6oskSZI0kNmMqZUkSZIWJUOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeSMNtUl2SXJqkg1JrkpyVte+X5JLktyQ5LIkT+3bZqCaJEmSxteo79SeBBSwf1UdBLylaz8dOKOq9gdOBtb1bTNoTZIkSWNqZKE2yWOBXwHeXlUFUFW3JlkGHAyc1a36CWCvJPsOWluYM5IkSdKojPJO7VOAfwVOTPLlJBclOQrYC7ilqrYAdIF3E7D3HGqSJEkaY6MMtUuAJwPXVtXBwG8BH+vahyrJ2iSbJ6d777132IeUJEnSEI0y1G4CHgTOBqiqrwLfoBd0d0+yBCBJ6N1t3QR8a8DaQ1TVKVW1YnKamJgY6olKkiRpuEYWaqvqDuCzwAsBkuwD7ANcDFwOrO5WPQbYXFU3VtXtg9QW4nwkSZI0OkP/U/92HAd8JMnJ9O7aHltVNyU5FliX5ETgbmBN3zaD1iRJkjSmRhpqq+rrwHO30n49cOg02wxUkyRJ0vga9efUSpIkSXNmqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMWRahNsiZJJTm6W16W5PwkG5JcneQ5fesOVJMkSdL4GnmoTbIS+DVgfV/zScD6qtoPWAOck2TnOdYkSZI0pkYaapPsBHwYOB64r6/0CuA0gKq6DLgZOGKONUmSJI2pUd+pXQtcXFVfmWxI8iRg56q6tW+9jcDeg9aG1HdJkiQtEktGdeAkTwOOARZ83GuStfQCNQBLly5d6C5IkiRpHo3yTu3hwEpgQ5KNwE8DZ9AbQrAlyfK+dVcCm6rqzkFqUw9cVadU1YrJaWJiYt5OSpIkSQtvZKG2qj5UVbtX1cqqWknvjWJvrKoPAR8HjgNIcgiwJ3BBt+mgNUmSJI2pkQ0/2I63AWcm2QDcD6yuqgfmWJMkSdKYWjShtqqO7Ju/DXjBNOsNVJMkSdL4GvWnH0iSJElzZqiVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzRhZqkzwqyXlJbkjytSSfSbJvV1uW5PwkG5JcneQ5fdsNVJMkSdL4GvWd2jOAA6rqJ4G/AT7ctZ8ErK+q/YA1wDlJdp5jTZIkSWNqZKG2qr5fVf9QVdU1rQdWdvOvAE7r1rsMuBk4Yo41SZIkjalR36nt92bgb5I8Cdi5qm7tq20E9h60NtReS5IkaeSWjLoDAElOBPYFjgIevQDHWwusnVxeunTpsA8pSZKkIRr5ndokbwFeCvxsVX2vqu4EtiRZ3rfaSmDToLWpx6yqU6pqxeQ0MTExvyclSZKkBTXSUNvdMX0V8Pyququv9HHguG6dQ4A9gQvmWJMkSdKYGtnwgyQrgPcCXwc+nwTgvqp6FvA24MwkG4D7gdVV9UC36aA1SZIkjamRhdqq2gxkmtptwAvmsyZJkqTxNfIxtZIkSdJcGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktS8sQu1SfZLckmSG5JcluSpo+6TJEmShmvsQi1wOnBGVe0PnAysG213JEmSNGxjFWqTLAMOBs7qmj4B7JVk39H1SpIkScM2VqEW2Au4paq2AFRVAZuAvUfaK0mSJA1VerlvPCR5JnBOVR3Q1/Yl4Heq6nN9bWuBtX2bLgduXbCODt8EcO+oO6Gt8tosbl6fxctrs3h5bRa3cbo+u1XVLtMVxy3ULgNuBJ5YVVuSBLgFOKyqbhxt7xZOks1VtWLU/dDDeW0WN6/P4uW1Wby8NovbjnR9xmr4QVXdDlwOrO6ajgE270iBVpIkaUe0ZNQdGIJjgXVJTgTuBtaMuD+SJEkasrELtVV1PXDoqPsxYqeMugOaltdmcfP6LF5em8XLa7O47TDXZ6zG1EqSJGnHNFZjaiVJkrRjMtRKkiSpeYbaHVySn0vyhVH3Y0eQZGWSu0bdD81ckjckOXDU/RhXSSrJrrPcxueRdhhJ3pXkUd38uiQnLPDxm8oIhlppkUsydm/obMgbAEOtRqYL8cfNYv1Zv1CYi9n2bxb73SPJRfOwnx+Gwm753UleM9f9LqDfBx613bX6JNkpyQ6Z73bIk25Nkl9M8i9Jvpbk5CR3dL9IDk5ySZIrk3wpybP7tnlt135lkk8l2bNr3znJnyfZ0H3b2nNHdmJjIMmhSb7YXZsru2s17XWZsu0Lk1zerXdBkp/o2o9Mck2SjyS5AvilhTyncTbN9dqYZFXfOl/ursGvAgcD70tyRZIXj6zj4+03uufJN5L88CMYZ/E8OiTJ57rr9tUkL1+4ri+IlcC8h8Z5tJIh9K+qbq6qw+dhVw8JhVX1zqo6ex72O3RJTutmL+r+L1gG/HiSzya5IcknkzyyW/ddST6R5NPA1cDu3f8xX0zyle459Nxu3eVJPt+1X5Pk1MkQ3HxGqCqnRTzR+yG+EziwW14DFLA/sAl4Ydd+GL2v+p0AntbN79nV3g78327+N4HPAo/sps8DXxj1ebY4AU8EbgMO75Z36q7XdNdlJXDXlOt6ULf8GuBaIMCRwIPAEaM+x3GaprleTwQ2Aqv61vsycGQ3/wXg6FH3fVyn7nfZb3fzBwL30PuoyUfO8Hm0K/BVYPdu+Ue67fYc9bn1nd/bgX/ufs6OBn63+xnbMPlz1q37QuCLwFeALwHP7dqvA/4/cAXwt13b/wAu69ouBA6Ycsxdt9OvNd22X+v6srJrfy1wZTd9qu//kDcA/wT8JXBVt82PzaF/231M+q9z33Yndo/NN4A1fbWtHg84rdvuqq62DFgHnNDVJ4D/TS8EXg38ft8+v9Dt9yLg/wGnjfBnaNdufl33uD0GeARwMfCqrvYu4GbgR7vlHwMuBR7fLe9L7xtWd6EX8ie69kcAfw+8sltuOiOMvANO27lA8AvA5/uWdwLuAw4CNk5Z92v0fvkfD6zra39Ct80jgE8Cr++rvbalH9jFNAEvAS6c0rat6/LDX9LAz0993IG7gBX0Qu2Noz6/cZu2dr269o0Yakd1TQpY3rf8ne45MNPn0YuBf6MXWCanTcB/HvW59Z3fm7v5o4B7gTd0yy8HLuvmtxVAjgSumLLf3frmXwmcP+WYu26jT0fSC4WTLwQe003buhnyhu5x3qdbPgk4vW9/s+3fTB6TH17nvu0e9gJoto8HDw21JwNn0/t/9bH0XiD9clf7AvDX9F5kPbp7zA4d0c/Qrn19/52+2vuAd3Tz7wI+3Ff7DeDbPPS5cROwX3e9/ye959SV3XU/qduu6YzgWL3xMt2HDm/rw4j9oOLhG+Qxvnfee6HpbKH3gm/SrMavac6+3zf/A6b/UqCtPY8CXFNVPzPvvZo/H+v+/TK94PR/uuUv0QsYAC+iF2QvTDK53YPA3tPs8/lJjgcex3/8xWGmXgKcWVW3AFTV9wC6P02fX1U3dev9OfDOJJPPjUur6huT8/Runkxne/2byWOyNWd3fb4uyRZgObB5BsebzvPoBeUHge8m+Sjw/L7+fayqtgBbuj//P4XeuY/Stp4v/f9vBPhMVb166g6SvIPeXetnVdX3k5zC9L/3msoIjqld/NYDT09yQLe8mt6fBO4DdkryfIAkP0PvCX4FvT8XvCjJHt02xwGfraof0PsT0upu3Mwj8WuE5+ISYL8kh0NvcD69P29Pd136rQcOSvK0br1X0nsVfRMaloddryRPBG4EntW1/RRwQN82dwNLF7qj4npm9jy6BNgnyfMmG5KsmhxnuEhMhpAfAFRV//JkIJkMIKv6pj2rasPUnSXZGzgVWF1VT6N3Z3IYL8SmhpkZvfiYYf9m8phszcP6MM+Px0DnPGT3MNjvoE8Dz0vy9MmG7vcb9P56e2sXaJfTu0M+qemMYKhd5KrqduBXgfO6V4oH0Xs1djvwUuAPklwJ/Bnwsqq6t6quBt4KnN/VDgd+rdvl/6I3bulaeuO3rliwkxkzVfUdem/iOql7nC+nF462el2mbPtteuNoP9qt9+vAy6v7e4/m3zTX69nAO4DfTPI14L8A1/RtdgZwom8UW1hVdT8zex59h96dxxO7N/9dS+9P463937atADL1hdVS4AHglvRu675plsf6O3qhZffuOI9J8hi2fTNkW+a7f7O1veNtKxT+E/Ar6XksvT+1/+PQejqY9wKf6Xuj2IxU1Y3Aq4HTu+fGvwAndOX3A89Kcg1wJr3HYVLTGcGvyW1AksdV1T3d/NHAH1fVj4+2V5KkbUlSwBOq6q4kE8A9VZWutgK4rqomuuXnAe+hN97xkcBXq+rV6X2k33n0xph+vap+Icn76b3f4s6u9paq2nXqMbfRr9cDv03vzuT99F4wfDPJa+ndEAH4FvDGqropyRvojS0/utv+57pjHjmX/m3rMUmykt5Y3a2eV5I7gIOrauN2jvf79G4gfA94AfAn3X7/rDv+B4DJFxAfr6o/6Lb7AvBnVXVet3wu8PdVtW66x1WjZ6htQJITgV+mN+7vbuBNVXX5aHslSZK0eBhqJUmS1Dw//UCSpDGT5Ms8/P/4a6qqpW/TkmbFO7WSJElqXmvvEJUkSZIexlArSZKk5hlqJUmS1DxDrSTNUvdlDI8bYLtzu8/8JMm7kwz8pp0kRyZ5Ud/yHkkuGnR/szmWJC1GfvqBJM1SVa2ah328c467OBLYFTi/29/N9L49cBgecixJWoy8UytJs5SkkuzazW/s7rpemuQbSd7Rt96BSS5Jck2S84DH99XWJTmhm39kkj9NcnX3lZbnd+0HJfliksuTXDu57ySr6H2N6Wu6u8bvTLIyyV19+39ht92VSS5I8hNd+5Hdcf68O9Y1SQ7exrlu7Vindl8KM7nOAUm+lWRJkncl+USSzyW5LsnfJXlSt97OSU5K8qVuX3+V5AlzuhiS1DHUStLc7VpVhwKHAG9NsmfXfibwkap6KvB7wBHTbP+7wP7AM6vqJ+l9Bz3ARuCoqvpPwDOBY5L8dFVdAZwGnF1Vq6rq3f07S7IMOAd4fVU9HTgDODdJulUOBP6iO9YHgT+a7sSmOdYHgTcmeUS32m8AZ1TVlm75cODVVXUgva9b/eOu/a3Ad6vqp7q73VcBfzjdsSVpNgy1kjR35wBU1R3A14F9kjweWAWs62pXAV+cZvufA95fVfd16367a3808OEkVwHrgSd3+9yeZwFXdcekqs4G9gAmw/aNVfXP3fylwFNmcpKTqup64FrgF5M8FngVveA86VNVdWs3fwbwvG7+aGB1d5f2im67fWZzbEmajmNqJWnuvt83/wOm/90622+7+e/AHcAzqmpLkk8Cjxqgf1PNtL/b8n7gbcBuwGeq6rZtrDt53gGOr6p/HOB4krRN3qmVpCGoqruBrwKvA0jyVOCwaVb/W+DNSXbp1t2ta38CsLkLtAcAz+/b5m5g6TT7Ww8clORp3f5eCdzUTYPY2rH+EVgOvAM4dUrtxUl+tJv/VeCfuvnzgP+a5DFdvx7TPS6SNGeGWkkantfRG3t6Nb2xoxdOs97JwA3A5d2f5f+ia/9DYE2SK4GTgM/1bfPXwKrJN2/176wbvvAa4KPdtr8OvLwG/170hx2r29dHgNur6tIp618EnJPkOnpDJibfVHYycBnwz12/1jOz4RSStF0Z/HecJGlHluTvgY9V1Zl9be+i98a5E0bVL0k7Ju/USpJmJcnBSW4EHqR7k5wkjZp3aiVJk59Hu24rpb+oqvctbG8kafYMtZIkSWqeww8kSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpef8O6RoZQ4ExRVwAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"### **Data Transformation & train-test splitting**","metadata":{}},{"cell_type":"code","source":"#Extracting labels(type of defects) from the whole dataframe\n\ny = df[[\"indication_type\"]]\ny = pd.get_dummies(y)\ny.columns = ['Color','Cut','No Defect','Hole','Metal_Contamination','Thread']\n\ny[:5]","metadata":{"trusted":true},"execution_count":7,"outputs":[{"execution_count":7,"output_type":"execute_result","data":{"text/plain":" Color Cut No Defect Hole Metal_Contamination Thread\n0 0 0 1 0 0 0\n1 0 0 1 0 0 0\n2 0 0 1 0 0 0\n3 0 0 1 0 0 0\n4 0 0 1 0 0 0","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Color</th>\n <th>Cut</th>\n <th>No Defect</th>\n <th>Hole</th>\n <th>Metal_Contamination</th>\n <th>Thread</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}}]},{"cell_type":"code","source":"X.shape, y.shape","metadata":{"trusted":true},"execution_count":8,"outputs":[{"execution_count":8,"output_type":"execute_result","data":{"text/plain":"((96000, 64, 64, 1), (96000, 6))"},"metadata":{}}]},{"cell_type":"code","source":"#splitting randomly to remove order\n\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\nX_train.shape,X_test.shape,y_train.shape,y_test.shape","metadata":{"trusted":true},"execution_count":50,"outputs":[{"execution_count":50,"output_type":"execute_result","data":{"text/plain":"((64320, 64, 64, 1), (31680, 64, 64, 1), (64320, 6), (31680, 6))"},"metadata":{}}]},{"cell_type":"code","source":"# X_train = X_train[:int(len(X_train)/3)][:][:][:]\n# X_test = X_test[:int(len(X_test)/5)][:][:][:]\n# y_train = y_train[:int(len(y_train)/3)][:][:][:]\n# y_test = y_test[:int(len(y_test)/5)][:][:][:]\n\n# X_train.shape,X_test.shape,y_train.shape,y_test.shape","metadata":{"trusted":true},"execution_count":46,"outputs":[{"execution_count":46,"output_type":"execute_result","data":{"text/plain":"((21440, 64, 64, 1), (6336, 64, 64, 1), (21440, 6), (6336, 6))"},"metadata":{}}]},{"cell_type":"markdown","source":"### **Image Data Generator**","metadata":{}},{"cell_type":"code","source":"#transforming and creating batches to feed in our model\n\ndatagen = ImageDataGenerator(\n featurewise_center=True,\n featurewise_std_normalization=True,\n rotation_range=20,\n width_shift_range=0.2,\n height_shift_range=0.2,\n horizontal_flip=True)\n\ndatagen.fit(X_train)\nbs=32\n\ntrain_batches = datagen.flow(X_train, y_train, batch_size=bs)\ntest_batches = datagen.flow(X_test, y_test, batch_size=bs)\ntype(train_batches)","metadata":{"trusted":true},"execution_count":51,"outputs":[{"execution_count":51,"output_type":"execute_result","data":{"text/plain":"tensorflow.python.keras.preprocessing.image.NumpyArrayIterator"},"metadata":{}}]},{"cell_type":"markdown","source":"### **CNN MODEL**","metadata":{}},{"cell_type":"code","source":"#model building\n\nmodel = Sequential()\nmodel.add(layers.Conv2D(100, (3, 3), activation='relu', input_shape=(64, 64, 1)))\nmodel.add(layers.MaxPooling2D((2, 2)))\nmodel.add(layers.Conv2D(64, (3, 3), activation='relu'))\nmodel.add(layers.MaxPooling2D((2, 2)))\nmodel.add(layers.Conv2D(64, (3, 3), activation='relu'))\nmodel.add(layers.Flatten())\nmodel.add(layers.Dense(32, activation='relu'))\nmodel.add(layers.Dense(6,activation='softmax'))\n\nmodel.compile(keras.optimizers.Adam(lr=.001), loss='categorical_crossentropy', metrics=['accuracy'])\n","metadata":{"trusted":true},"execution_count":52,"outputs":[]},{"cell_type":"code","source":"model.fit(train_batches, steps_per_epoch=len(X_train) //bs, validation_data=test_batches,\n validation_steps=len(X_test)//bs, epochs=50, verbose=1)","metadata":{"trusted":true},"execution_count":53,"outputs":[{"name":"stdout","text":"Epoch 1/50\n2010/2010 [==============================] - 70s 34ms/step - loss: 1.2056 - accuracy: 0.5051 - val_loss: 0.8084 - val_accuracy: 0.6569\nEpoch 2/50\n2010/2010 [==============================] - 70s 35ms/step - loss: 0.7871 - accuracy: 0.6734 - val_loss: 0.7191 - val_accuracy: 0.7002\nEpoch 3/50\n2010/2010 [==============================] - 70s 35ms/step - loss: 0.7037 - accuracy: 0.6996 - val_loss: 0.6378 - val_accuracy: 0.7267\nEpoch 4/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.6519 - accuracy: 0.7219 - val_loss: 0.6195 - val_accuracy: 0.7340\nEpoch 5/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.6140 - accuracy: 0.7367 - val_loss: 0.5942 - val_accuracy: 0.7454\nEpoch 6/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5821 - accuracy: 0.7465 - val_loss: 0.5565 - val_accuracy: 0.7611\nEpoch 7/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5635 - accuracy: 0.7582 - val_loss: 0.5669 - val_accuracy: 0.7526\nEpoch 8/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5342 - accuracy: 0.7687 - val_loss: 0.5109 - val_accuracy: 0.7795\nEpoch 9/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5278 - accuracy: 0.7753 - val_loss: 0.4961 - val_accuracy: 0.7882\nEpoch 10/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5038 - accuracy: 0.7849 - val_loss: 0.4873 - val_accuracy: 0.7864\nEpoch 11/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4857 - accuracy: 0.7897 - val_loss: 0.4914 - val_accuracy: 0.7907\nEpoch 12/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4762 - accuracy: 0.7972 - val_loss: 0.4586 - val_accuracy: 0.8061\nEpoch 13/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4682 - accuracy: 0.7993 - val_loss: 0.4494 - val_accuracy: 0.8093\nEpoch 14/50\n2010/2010 [==============================] - 69s 35ms/step - loss: 0.4526 - accuracy: 0.8085 - val_loss: 0.4471 - val_accuracy: 0.8103\nEpoch 15/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4373 - accuracy: 0.8157 - val_loss: 0.4410 - val_accuracy: 0.8147\nEpoch 16/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4424 - accuracy: 0.8130 - val_loss: 0.4291 - val_accuracy: 0.8192\nEpoch 17/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4280 - accuracy: 0.8202 - val_loss: 0.4143 - val_accuracy: 0.8266\nEpoch 18/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4135 - accuracy: 0.8256 - val_loss: 0.4090 - val_accuracy: 0.8291\nEpoch 19/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4122 - accuracy: 0.8284 - val_loss: 0.4418 - val_accuracy: 0.8146\nEpoch 20/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4004 - accuracy: 0.8351 - val_loss: 0.4156 - val_accuracy: 0.8287\nEpoch 21/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4052 - accuracy: 0.8315 - val_loss: 0.4141 - val_accuracy: 0.8230\nEpoch 22/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3974 - accuracy: 0.8329 - val_loss: 0.4012 - val_accuracy: 0.8303\nEpoch 23/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3846 - accuracy: 0.8404 - val_loss: 0.3917 - val_accuracy: 0.8396\nEpoch 24/50\n2010/2010 [==============================] - 69s 35ms/step - loss: 0.3826 - accuracy: 0.8387 - val_loss: 0.3786 - val_accuracy: 0.8424\nEpoch 25/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3818 - accuracy: 0.8442 - val_loss: 0.4114 - val_accuracy: 0.8343\nEpoch 26/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3759 - accuracy: 0.8447 - val_loss: 0.3923 - val_accuracy: 0.8415\nEpoch 27/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3647 - accuracy: 0.8513 - val_loss: 0.3647 - val_accuracy: 0.8503\nEpoch 28/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3660 - accuracy: 0.8514 - val_loss: 0.3669 - val_accuracy: 0.8497\nEpoch 29/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3679 - accuracy: 0.8491 - val_loss: 0.4546 - val_accuracy: 0.8173\nEpoch 30/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3585 - accuracy: 0.8520 - val_loss: 0.3663 - val_accuracy: 0.8537\nEpoch 31/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3578 - accuracy: 0.8546 - val_loss: 0.3515 - val_accuracy: 0.8589\nEpoch 32/50\n2010/2010 [==============================] - 69s 35ms/step - loss: 0.3536 - accuracy: 0.8578 - val_loss: 0.3457 - val_accuracy: 0.8617\nEpoch 34/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3457 - accuracy: 0.8625 - val_loss: 0.3513 - val_accuracy: 0.8612\nEpoch 35/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3424 - accuracy: 0.8621 - val_loss: 0.3465 - val_accuracy: 0.8616\nEpoch 36/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3366 - accuracy: 0.8652 - val_loss: 0.3496 - val_accuracy: 0.8611\nEpoch 37/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3340 - accuracy: 0.8677 - val_loss: 0.3391 - val_accuracy: 0.8610\nEpoch 38/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3225 - accuracy: 0.8711 - val_loss: 0.3404 - val_accuracy: 0.8638\nEpoch 39/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3287 - accuracy: 0.8696 - val_loss: 0.3299 - val_accuracy: 0.8664\nEpoch 40/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3209 - accuracy: 0.8720 - val_loss: 0.3276 - val_accuracy: 0.8696\nEpoch 41/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3225 - accuracy: 0.8738 - val_loss: 0.3107 - val_accuracy: 0.8750\nEpoch 42/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3241 - accuracy: 0.8717 - val_loss: 0.3452 - val_accuracy: 0.8612\nEpoch 43/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3176 - accuracy: 0.8751 - val_loss: 0.3208 - val_accuracy: 0.8718\nEpoch 44/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3154 - accuracy: 0.8771 - val_loss: 0.3269 - val_accuracy: 0.8736\nEpoch 45/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3003 - accuracy: 0.8816 - val_loss: 0.3530 - val_accuracy: 0.8668\nEpoch 46/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3067 - accuracy: 0.8808 - val_loss: 0.3158 - val_accuracy: 0.8765\nEpoch 47/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3054 - accuracy: 0.8801 - val_loss: 0.3255 - val_accuracy: 0.8705\nEpoch 48/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3001 - accuracy: 0.8827 - val_loss: 0.3228 - val_accuracy: 0.8724\nEpoch 49/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.2991 - accuracy: 0.8864 - val_loss: 0.3455 - val_accuracy: 0.8645\nEpoch 50/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3019 - accuracy: 0.8823 - val_loss: 0.3021 - val_accuracy: 0.8809\n","output_type":"stream"},{"execution_count":53,"output_type":"execute_result","data":{"text/plain":"<tensorflow.python.keras.callbacks.History at 0x7fe3f204c550>"},"metadata":{}}]},{"cell_type":"markdown","source":"### **Predictions**","metadata":{}},{"cell_type":"code","source":"#predicting outputs for test dataset\n\ndatagen.fit(X_test)\npredictions= model.predict(X_test)\npredictions[:5]\n","metadata":{"trusted":true},"execution_count":54,"outputs":[{"execution_count":54,"output_type":"execute_result","data":{"text/plain":"array([[1.2441468e-13, 5.3811799e-11, 9.5440066e-07, 4.0529411e-08,\n 4.4220947e-06, 9.9999464e-01],\n [1.8547224e-13, 6.2210410e-11, 1.1664010e-06, 2.5988212e-08,\n 2.0647996e-05, 9.9997818e-01],\n [1.8294052e-13, 8.4191298e-10, 7.5464533e-07, 6.3542807e-06,\n 8.8500065e-06, 9.9998403e-01],\n [1.4470559e-13, 6.4180772e-10, 9.2504746e-07, 2.3590935e-06,\n 1.1521787e-05, 9.9998510e-01],\n [7.8577166e-14, 1.1962767e-10, 7.4712875e-07, 1.8806071e-07,\n 7.9157680e-06, 9.9999118e-01]], dtype=float32)"},"metadata":{}}]},{"cell_type":"code","source":"y_pred=[]\nfor i in range(len(predictions)):\n y_pred.append(np.argmax(predictions[i]))\n \ny_test2=[]\nfor i in range(len(y_test)):\n y_test2.append(np.argmax(y_test.iloc[i,:]))\n ","metadata":{"trusted":true},"execution_count":55,"outputs":[]},{"cell_type":"code","source":"labels=np.array(['Color','Cut','No Defect','Hole','Metal_Contamination','Thread'])\n\n# # 0='Color'\n# # 1='Cut'\n# # 2='No Defect'\n# # 3='Hole'\n# # 4='Metal_Contamination'\n# # 5='Thread'\n\n# #rows=>true\n# #column=>predicted\n\n\nconfusion_matrix(y_test2, y_pred, labels=[0,1,2,3,4,5])\n\n#diagonal values representing the correct predicitions","metadata":{"trusted":true},"execution_count":59,"outputs":[]},{"cell_type":"markdown","source":"### **Sample Testing**","metadata":{}},{"cell_type":"code","source":"i=1000\n\nfig = plt.figure()\nax = fig.add_subplot(111)\nax.set_title(\"y_pred = \"+str(labels[y_pred[i]])+\"\\n\"+\"y_true = \"+str(labels[y_test2[i]]))\nplt.imshow(X_test[i])\n\nif(y_pred[i]!=y_test2[i]):\n print(\"WRONG PREDICTION\")\nelse:\n print(\"PREDICTED ACCURATELY\")\n","metadata":{"trusted":true},"execution_count":61,"outputs":[{"name":"stdout","text":"PREDICTED ACCURATELY\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAEXCAYAAABrgzLrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOBklEQVR4nO29aZRsV3Um+O24MeY8vnyj9CQhJEvGCErGuD2AwdhAuwuWl8vLLrsbl3HRg11lt11lhKtWr65eZRfuH+WiFl6waA/IXZTBhY2haU80BpcnBiEEmtD83tObMl8OkZkxT6d/RGTsb++XkS+lp4wUivOtlStPxDlx7rnn3nPv3mfv/W0JISAiIuKlj9RhDyAiImI4iIs9ImJEEBd7RMSIIC72iIgRQVzsEREjgrjYIyJGBHGxjxBE5PMi8jNDPN7rReT8sI63y/GHer4vdsTFHvG8ISJ/KiKl3l9TRBr0+YOHPb4Ii/RhDyDi+UFE0iGE1mGOIYTwFhrPhwGcDyH8a/ru9c+lPxFJQgjtF2p8ERbxzX4AEJF/KSJ/6L77jyLyvmv87vMi8u9E5EsisiUinxSRuV7daREJIvJOETkH4C973/+0iDwqIhsi8uciciP19yYR+YaIbIrI+wHIC3+214aI/JKIrIjIJRH5J/T9h0XkAyLyJyJSBvB9InJcRP5QRK6IyDMi8s+p/WtE5O9FpNjr6/0ikqX6F8X5vlgRF/vB4D8BeLOIzADdtzCAHwPwe/v47f8A4KcBHAPQAvAfXf3rAHwLgB8UkbcB+BUAPwxgEcBfA/j93jEXAPwRgH8NYAHAUwC+a9BBReQf9xbRoL8b9nfqV+EogGkAJwC8E8Bvisgs1f9jAL8KYBLA3wH4fwB8rdf+jQB+QUR+sNe2DeB/7Z3Pd/bq/5fnc74jiRBC/DuAPwB/CuCf9so/BOCRffzm8wDeS5/vANAAkAA4DSAAuNkd4530OQWgAuBGdB8aX6A6AXAewM8c0Pl+GMC/dd+9HkAVQJq+WwHwWvrN71HddwA45/p4D4DfHXDMXwDwiV55qOf7zfgX3+wHh3sB/GSv/JMA/u99/u5ZKp8FkEH3TbVb/Y0A3rfz9gWwju5NfgLAcW4buiuAfzssrAW7t1ABMEGf/fkcZ4kCXcllCQBE5OUi8mkRuSwiWwB+DTo3L5bzfdEiLvaDwx8D+DYR+VZ03+wf2efvTlH5BgBNAKv0HYcpPgvgfwwhzNBfIYTwdwAucV8iIq5vAxH5CdpJ3+3v+Yrx14I/n2fc+UyGEN7aq/8AgG8AuDWEMIXug2BHL39O5zuKiIv9gBBCqAH4OID/DOBLIYRz+/zpT4rIHSIyBuD/APDxMHiH+oMA3iMidwKAiEyLyD/q1f2/AO4UkR/u7Rn8c3T150Hj/UgIYWKPv/2O/3rwJQDbIvJuESmISCIi3yoi396rnwSwBaAkIrcD+J/pt8/pfEcRcbEfLO4F8ArsX4RHr+2HAVwGkEf3pt0VIYRPAPh1AB/tibUPAXhLr24VwD8C8F4AawBuBfC3z/kMhojeQ+2HANwF4Bl0JZrfQneDDwD+BbobetsA/i8AH6PfftOd77Ahvc2MiANAT/T9BoCjIYStfbT/PID/FEL4rYMeW8ToIb7ZDwgikgLwiwA+up+FHhFx0IgedAcAERkHsIzubvqbXV1pwM/eMuD7iIgXBFGMj4gYEUQxPiJiRBAXe8SBQUTOiMj3H9Kxf0pE/uYwjv1iRVzsL0LIN0EctnPCqYpIh51wDnt8EVcjLvZvQvScRg4V7ISD7ubiRXbCea79vRjO6aWOuNgPEM8n1FVEfhXA9wB4f+8t+f7e90FEflZEngDwBIW8pum3RiLYK/x1iLhLRL7eCzv9mIjke2N7vYic73nLXQbwuyKSEpF7ROQpEVkTkT+QXohv7zf/pecXvyki/3XHc7BXNy8in5JuaPCXANwy/FN9cSMu9oPFcw51DSH8K3RDVX+u95b8Oap+O7qRYXdc68B7hb8OaL9XeOs91zreHvhRdM2PNwH4NgA/RXVHAcyhGwDzLgD/DN1zfB26gS0bAH6T2v8pup5xRwDcDxtv8JsAauiGBv907y+Ccdhhdy/1Pzz/UNefcd8FAG+gz6d736V3+x32CH89gHN8PbosNf77MwB+kj7/nwA+SL9pAMhT/aMA3kifj6EbCJTepe+Z3vlPoxsC3ARwO9X/GoC/Oezr/2L6i2/2g8fzDXXdDc8lZHOv8Ndh4jKVfXjrldANGNrBjQA+QWN+FF3CiqVeUMx7eyL+FroPEqAb4rqIroOYDw+OIMTFfvD4Yzz3UNdBnk78fbn3f4y+4yivvcJfr8I1wlt/ZR9jfj7w5/ksgLe4MedDCBfQDYB5G4DvR/dtfnpn6ACuoMvq48ODIwhxsR8wwvMLdV0GcPM1+r0C4AK6IbGJiPw07KbUXuGvu/W3V3jrr+1jzC8EPgjgV3c2EkVksbf3AHTDW+voRrSNoSum74y9jS4l1f8uImMicgeAdwxpzN80iIt9OHiuoa7vA/AjvV10z0HH+KcA/iW6C+BOdDncAOwd/voixvsAfArAX4jINoAvoLshCXQ3Nc+i+4B7pFfH+Dl0VYTL6IYI/+4QxvtNhegbPwQ811DXiIiDQHyzHzBiqGvEiwXRa+kA8XxDXUMIf33QY4sYPUQxPiJiRHBdYryIvFlEHhORJ6/TyyoiIuKA8bzf7CKSAHgcwJvQJeP/MoAfDyE8Mug3ycR4SM/N7V7JiXrckKS9e13Kc652qK5jq6Qdrlnu9j94PkJan41BaMDukRkSoXa+joabuLqMHrtQaPTL0+mqaVdIaV0W9kSbNJhyJ9cvV9pZ064V6FzcIFsdrWu16eQ67mRa+jlp2iozLPpZxymOmbKec6pqOwktopvf6z6layGJm9S0fu5kqZyx58LXIrgu+PpeNQq+9gmdS2KvSzatN2si7pq19YCNFh28aW8s2cdSbW6so10u75r26np09tcAeDKE8DQAiMhH0XV6GLjY03NzOPbLP797JZ2XNO1YM9v6OVXXcnbb9V/R2ciW7Mxkt3SyM1t6U6W3aqadtNxTgtCaVf+Vdl4vSqtg747mBC2WvD2XxqR+bkybKlSP6839ijvVHP/WxQdNu7vyWnfSPQiWaVF/oapm9/u2Tpt2G3U9l4Z76qxWxrXdppZb2xnTLr2ht8/4BXuefC3aOa2rLZhmWPqyXovxBy+auvbylX45NBsYBMnpQy01NWUrFzXTVPUGnfDSMXvrN6Z1jE0Xs9ca13MJ7sHezlPdlJ7L1GzFtDs1U+yXJzJ1U3e5rGN+dkXHK8s5047vfb/wd57X59//GxiE6xHjT8C6J57HLq6YIvIuEblPRO5rl2KYc0TEYeHAd+NDCB8C8CEAyN10MmDay3s7DemptWbfINkiiYv0UEzq9vHG4n6zYN80KRKJUg19kyU1OwWpLbWOhap962cq9Pk4PYGdKpAiUUym/Ftfx8VvBQAYWyr3yzdPaBKYW3OXTbu5RMdxtjVm6s40F/vlxyrqPXuuNGvapUmU9G/2akPnv1Wma9EeLHHxmxywKlb5iJazG6YZMiWVZkLZvg0RSMpiUT1rVZLUhEofmLPiEktj9Wk9z7Z9aSKp6fg7WSfi0+H875Ci827pPdZs2TldKau4sBwmTV1xS8fYqdO9k3Wvb1KjUs8jWff1vNkvwPoin+x9FxER8SLE9Sz2LwO4VURukm6O7B9D19UxIiLiRYjnLcaHEFoi8nMA/hzdeOLfCSE8/IKNLCIi4gXFdensIYQ/AfAn+22fSjoYm+wq3bWq1bvCin7OX7ECB+uDrE/xDirgTCZO3WmNky5EddkNq5ejrru+YdN5tzZ0vyHTUqW0M2N1sNSUKnbtnFXyhPTe5ozd+b9tYa1fvmPM7kwzzjRn+uX1tt06frymevqDG8f1WG23d0CTUG3aPZLSht0H2EGmaPvIbWrZWZNQWSLzI+m1qZa9ZtKhi7Fg9xVSWRpXY8BeDwCZ1DnoFOx91c7pmPn+SNzmfmuM7YO2LtXQuk56sP1LMvpDb86sN3WplUp5+0PqMsnTfZW2A2mz6dCb5Xrz6q0FjOgbHxExIoiLPSJiRHBogTCdNStu5Tb0uZNYnwOUiBM1kJdSuuJEQpL0vHddqkmiZIPKFSvPdbbUUye0rRgVKmoaEvLukqYVMdNtNf8kk1ZEbo7rlKfnrQrxqhl1WziduYJBKHbIIca5e321eMo3BwBM5Wq7fg8Aq9vj9gvZ3ZzEpjbAzun2TbaLQH0ImYzYxAUA5eOq5iQL1uMmXVVvy6Q6KEU9kJT0GrbH7Xy3czp+Ns2K686aT516yK9E7y1JXo8JifFtZ6bspGkO0vbgHfJYZM/JlPOcKWdIPdx05scdh5s9vOzimz0iYkQQF3tExIggLvaIiBHBUHX2TiuF8lpX38xU7HOmOUkBBW5UbMUQchPMFm27dDXs2g4AcluqT+VXKHhkfdM25OiqlAseIjNRaJCu37G6fYrcOUMyY+oas9rH8Xl77BPkSzqT6P5AsW1NYQkpZl8rWxLVeksn78S49n/7hHW5/ezybf1ydduZB7dU72WzU8aFNlSOal19wU54Utl9D6Yx4+ZUtB0HzABAmyxULSr7/ZikVuiXs1s+QoQORZfJR98FutYdqw6jXdBOWuP2WkuB3H2pKnGuroWs7ut4s1yDAlyqFb0WHWemDFUddHbd7tXs6Ox+L8K0GVwVERHxUkJc7BERI4Lhmt46Aql1ny+dTLiqbhDYxJYp8/ee5UKLXhXIVFTGSjZJjPeeWZ3B8ewGbbbjuLGTSHhV3PQRFftumlozdUfS6rG33VG5lU1tAPD1ioruDxWPm7oNEmm/Z/HJfnmzVTDtVrbU6yxZdWYcksjT5cHiLXuTJU4tY3NVY1bnqlWw7WqLFMnVsNezOUWek+M034ltJxUSad2lyKyT6bBEx3KXnbkFvKjO5xKy7v4g06TkBsvQHElYLtprIVUaPxOC1JypkzRHb3beUZW8J6P5/eCqiIiIlxLiYo+IGBEMVYyXDpAud58vXkRhsV7cLmSW4lFYxGSvpG6lFj2xBXt7SZN2UNt7bF92/M4uBTpQnec9q9y+1C+XT9gxjs/rLvstY9ZLbjHRE+Ud96fa1sPtybISVJxbt8Ej0+OqojxOrBEXyjN2jKuqGmQ941PYvdyxzmnG0c6LlUx5RxoJsqfKph0bPxLH25ZLdpdJt1ygjhGt3SVr36KmgAbRaokLJAnjek+knTjeJkIJNNz7kfrpcJBTyg6ktqqie3rb7aTz/NM0pktuHRANm1dhk54K5NUTc5zBVRERES8lxMUeETEiiIs9ImJEMFydvQXkVnt6iFO3GzNaTrsALUOux+qZHz3rkFWr06TL1AkRVCDrFFFWItsu/I5g9PRbbKRZ8VZVWGunrUJ8elLd0F4z9pSpuzWj+vZlIptYbVpyjDObFA3m9NqECPOXK0pRfObyvGnHNNDsJefBBBWOeh5ZJnXw08gKPe3H5LNWqVyaVEX05klrijyZU4/CtabuWzwzZ8/l0WUl7BAXKcbHG5sj02bNeg0yP/543l6zck1PvLJhzWZsKmPyyXbRThZ7vGVKg+c7Iauw9wYsrOteQrrqvDab3c9J021acJuBNRERES8pxMUeETEiGL7prSemOMnUZLvwHGAsnrPofpUpiCR1b4JI1egLSgkk4vjAGM4sF8hkl5pRl6vKSXsym7fqCSwdLZq6Ny19o1++NWNJ1HOi4yqSveqhbesl1ySRc2bMZoQ5PqFy90OXj/XLctmKrUxE4fnrcxvMH6ffe7GSs+60XTql7RuI572unTQcn/pYenCmF06T9MpxzYJzKr9u2n3f/OP98nLTZoS5VNPr9NUVzWHSccEoHJySSex1H8vpvVMfszcdc8FxoIrn68uvsmecNwtrOU0m42zJLoT8KhFb1G3gUT+Qx5uL+TgDayIiIl5SiIs9ImJEEBd7RMSIYKg6e0gBO6nJXBCWIZKEc6VlEgMmHfAEBJw2uO3ydbUn1BSSqmiHsuG44dmk5txghaPbpjVqrHTCDiRZVD36NUfOmrrXTTzaL8+5/h9qqF59f/V0v7xet+6hzKlxesrqr+e21X22dlnNVROX7HOd5y7Zcvor1RkuD78P0tJKn1uPXTs5912tbvc3HijrOc/OWnaMMxNqYrxz+lK//IqxZ027o2ndp3jd+GOm7lNbd/XLy1N67OWSHUeNlkKjZa9nmnT4fN5OQqWl45cG6+U+V7cWfZ62DLm+JhT5l1u1+xnpdXU1lpqtC/nu/S3twWFv8c0eETEiuOZiF5HfEZEVEXmIvpsTkc+IyBO9/7N79REREXH42I8Y/2EA7wfwe/TdPQA+G0J4r4jc0/v87mt1FBKg1ZMsm1PO86vKKXbcD0naZZp070GXooAq30f5qIpbYySOZ3LWlJLaIm74lIuMImKL1hKZ3o5akW12Wgdy25jlfjuV1v4/Vz1q6r5GpBRPUMTaZt2aB2+asZ5mjMsbKp6On6XUR+6x7rn5GdyWzUQpl5q6Nq0N6/ODiRaYcAQutVejqddlvWbVms4SmRizqhotODK8Dr2zfDqsl+dV/G/ParszeeuFxymtt2p2vtlcGJxlKxDxRKZMacGdqM7EH/XcYBE/V1SVIbNhzaq4oiqbN7CJTO4+QMI13+whhP8KYN19/TYA9/bK9wJ4+7X6iYiIOFw8X519KYSw88i8DGBpUEMReZeI3Cci97XL5UHNIiIiDhjXvRsfQgjiow9s/YcAfAgA8idPhb63luedILHH82gZKmlybvLUxhzQn/bkFbRzXF1U0b01ZkXHzLSKlelNK+uGtD4bN29Wc0Jt0Xpcncqr+LXiPLr+snJzv/xw5YSpe2JbRffVqu6kT7vUTccLuvu83bQiZ2tFx5Whq3tVcBEzYVvnOpPhNE2SpL8ubdqBb0zZ+ebdaL62wV939px0pCU14m1bq+l8fLlzo2k3n9OXyM2FVVP3stxyv3wbifSJO5lqW49VrNo5LZH1pu08AFPEf8deid5y0aY53mseAxGySNmK8YFSjiHjsiD3vUIHB9k83zf7sogcA4De/5Xn2U9ERMSQ8HwX+6cAvKNXfgeAT74ww4mIiDgo7Mf09vsA/h7AbSJyXkTeCeC9AN4kIk8A+P7e54iIiBcxrqmzhxB+fEDVG5/rwUIKaOe6up00rW6xV0A/P5JYT89uumitrcH85GxOYh2yOWF1sJDQOJypqTmtel1liXSrOevNVG1pu2cq1sTT7Ojxnq1a94TNhuqGaSKhODZmvfxePX6mX/6dc99t6lgp5p2UlDO1CZlosi4D1qCUSS1vMqI6TzjZmOFQRSr618vg7R7Uy6qXXs6oSbE14bwB6ZwnnE0xR8rzRkv1/rYbyEJW9f4zyZypy2QGk5K2eK6oWcoF8w3yAgUcOSoTfM5YMyLr8JKzOntnh4TFpywjRA+6iIgRQVzsEREjguGmfwIQeimDPCc2S1XeNMFmDE4RlC8OFq/EieCcIdSI9K5dY1IrWwVrgmHxi1MTpRxHOPPAbTVsxM8ZEuPHExfMQOLodl3FtBP5omn3V8Xb++ULqzOmLr9KXGoXKfuo4+jg4Iv8mptHujTbJ/WkPU8/qwKex47FekOO4T3QWEXbsipVm0gvtoIGA+Uy1j1tNqdeiUdzVieZS1TvYy6/M069msqobfIV85dM3WNFNYmWG9bjcj2vE9ucYk6+wR6FV3mIErJFathyaaiWaMwuTVlrvnufhWeiGB8RMfKIiz0iYkQQF3tExIhg6Dp7PzWzt+IwmYIzEzHRYUJun83xwc+qVn6w7sL6aztr+2A9tOUIGVrEIdGcUJ0p60wz1WZm1zIAzBVUv4TjYec0ysx3/rdXbjbtljdV90w9bfcExkhPp+2Bq/ZB2NxTeHbb1NVO6DjaedZDbR9E636VHsqEosKuo1YtR3Zj8DUMlEa5Qym9S1Xr31sZ04nMi9XnX55Vd9lLTTV1ekKQOTK93ThmowpbtLFwpWbNYes5dYcOTEayhyW5cMVuXGSIuJP3mlIV6+PcGdMbt37UkW8sdC9OJzN4PuObPSJiRBAXe0TEiGC4YnyHoqH2MMGkXcw+i+5CvNieZ45FydaYq2MJi47dcPz1xoPOoV0gEXlWZdNCzprQ6k0dSKlsbV4VMt2c61gPukadovGaOuBSxYqtnfMqgk4sD059zecijk984qyqEykXXZWuqGrAXmHipoZVA3HWu06OxsEZknxKYe7Tp1um+U4KlFI5bQ+2UdPxPlo5Zurm0mp6m6Ab6WWTNl12im4KbgcAC1kXXkmQjE5C/grPt23H5+0sruZ+bI3rvZP23nB0PZtTVh/aurG7gHyKLjOGwVUREREvJcTFHhExIhh++qeeZ9XVu8ODf8dBBOyp1Zh2wRe0e3sVSRd9zlJcSa7omjHHnXsUthvsFUYi96wLzOjo53bT1m0v625uasyl8KG0Tsiy15k9z9yatstue0/B3X82/bSVn9PLRW1XsgxC0p7BbvAkF/VZJq+wdTwqFmGzjraakrOiMWfF8zRRck9PqGg9U7BqR4vmm0koAOD+khJd3FxQ0f1I1logODDmEqcUBlCmSb1lzIr/TxxZ7JeXl5SwaeYbpplRc/Kb9jwzFMDF6lZn2loM2mR1KN5il25tvvu7vbzz4ps9ImJEEBd7RMSIIC72iIgRwXBNbymg09NFDdGgg/fUGuQN13Y6ZHOCzHJjdlOgcJGIAcljKbdt27E5z5v2muPkTZboc7KMadMuOao6Zag7lzEmz3SP2g4ReoQ2NbxiT7SwQiapq4g1tZxf1w+FM0V7rGXVPTn9NADU5/V4xmtwHLbdkvafWXdEjIMCEt1eCtHoozVmJ6S5peOoZrVDn5X4phllOveRhFcaukeyTicwl7H7FFPEyPkthYum7lFoyuyUO4G7FzWV9KdPUC6BDevZOHlO77OUu2bpim5qSFPPk1OWAcDqndpn6QYXEVfo/S4dUzZHRIw84mKPiBgRDDeLK9STLeSduEHuWZ0pL5qSZxJzkDsJ2aTcqdjnWO2Iij3pqtalXbZNNpFwRk3ABeuQGS6z5VIaJWQrzLrzzOo4Os4sl2zoAZKK6jLjVqpEflP78J5rmW2dhPwFtTGGi8umneRVRA6TVj5vkjjNHlk+ZZcQuUTiyCs4+IX56LyHF5tBJ855b0AybxZURN5Ysie9vaji7dlJa5arkscik4ocnbSmt+PjSnqRcZP6mvGntP/Goqn7+rZy/y/Map8rx+yJZkqkRlbsPRFIJexwboLTjr/+RgqSWbC26s5673idwepxfLNHRIwI4mKPiBgRxMUeETEiGK7pTZRw0hsImjOkJ2WtbpgqsS47OLKIdeqr+cm1WDnOZAG2YX6dTCQu7a7JgVbBYJBNrb5g9T/ZpnNx5sfcOu8D0Jg27Immq/o5qdm67BUyKa0W9bg+ZC0zODwqVySTWknbtfeIJORoO388nrfWhDM7UapuNon63wnposGZ+Rpt1dnX1qyem9DeDY/xqSVrzizN6XkWEutafDKrZBZtx0pRopTTzPUvs9YE2JjWMTY27T2Xaumx65QGe+sW0wytGbohS3bpZkrd3/k1YY4zuCoiIuKlhP2kfzolIp8TkUdE5GER+fne93Mi8hkReaL3f/ZafUVERBwe9iPGtwD8UgjhfhGZBPAVEfkMgJ8C8NkQwntF5B4A9wB49549pQLaPe42aVtxKDOrpoTJCWs+aS6o2La9TmaiuntWEZHAVSaIhKKJSFpsFq04y1FZSdOLnCQ+kwjOnnW+LtW0U9wcJxXCE3hQN2yeyZSsbMaie6ZoiRakQiYZJj9wHPjG9JZyJsAG9U+idc1andAh8+lV0iNPMnUfnLhfI5XHE44MioRMOy4JzgnQcabIdJnVBC3X6tbDbZkm/7G01d/aVHe2ZFNDPbsxo+1IJUwlzmybHWx+LB/R+5tF99a0Dw2le6dmVZn+eV6PGB9CuBRCuL9X3gbwKIATAN4G4N5es3sBvP1afUVERBwenpPOLiKnAbwKwBcBLIUQdlJnXAawNOA37xKR+0TkvraLm46IiBge9r3YRWQCwB8C+IUQgkkrGkIIuHqDfafuQyGEu0MIdycT47s1iYiIGAL2ZXoTkQy6C/0jIYQ/6n29LCLHQgiXROQYgJVrdpQEJFNdk0TbRYM1y8S17njYp8dVhz92o7oksr4EWJLGVGKVl2adcpZVtdxwrrms16Vag912uc6zxfAz1BNY8l5F05mhWqTPM7e9J4tkPZ2jpDyE9fRg+wjEQd6ZsPp8q6Dz2CH90kcZGv275fZI5tR8FVi/dHnxWse1XWvThjvmV/R3zFHvI/14j6R80g7DmARJ986t2fFWsnpyZzo2D9zKtkbONRp2yXTO6AuMj9VxUZdC8+j3JmoL+rvmEZ2PzIQ133XaOh9hy5neesvCu08z9rMbLwB+G8CjIYR/T1WfAvCOXvkdAD55rb4iIiIOD/t5s38XgP8ewIMi8kDvu18B8F4AfyAi7wRwFsCPHsgIIyIiXhBcc7GHEP4Gg5PZvPH5Hnh23tpP2kQauLVhifYSEslbJMpkHH848643a/bUjAMZS58L1luqQswZ0rKCT26LxpEfLBSxmOkoyBFoID7NMadMqpPXQueSbdcuUCSX5ydv0Zy0KcJuzhLktyZVbG1OWfG5PqNz3Jwks1bezncgU2dStWqZLKvc2poaLFsako5x265J6bN5rlKOd51VKk4VDdhIvTpZzbJF771IkX6O679KaZnbE84jksT1/GWdg5bzjmwTj/7WLU49pAi2GxdVX5nJWRP0Q+eVRCN/xd2bmz1SmOsR4yMiIl4aiIs9ImJEMNxAmCD9XfjsjJU3jk8oj1hq3oo5T2/o7miLvJQ6jk89sEjbcM8x8rZjkT5MWG+p7O1qVWxsO265Abx5nkSDPbquEuOpbdMmBB3oMVY6bg/QSasIPvmUk2mbej5hQtWh+qJVjepzjuiP66aID36SvLZm7LGM4922mwSCCWLJWL0jkyeevILtfyuQqZbUK55fwM5b25GitAt6PCaJYM86wPL6pd01qxzRtvWWvxZ8LJorp16FBT23ySkrnt80q/f+6QkNunm0eNT2QVyEY8s+aKj3eTAFXXyzR0SMCuJij4gYEcTFHhExIhgyeUVAKt1VZry+nU9Ud7tj8pKpe8vCQ/3yn6/d2S9vusilOqW7PXfZRicJmYbY82tnPDvgyKXaTdYs18mp3pglj67CquPwpmizllWVLfZIW806X2PKzRWRXIS0fV6HApnUFnVToHLU6ugd8uzzRB+cQ685q3sr2Zzd3+jQXLWdyt7JsK5M+vCaHQdzbibuWmTGVc9tGS88O2COVBy76Exea3pPNKfYRGfHO/20Hqs2b8eYISuxdLxJjT5QVW3BnsvMjMaFvGxu1dQdzes+UYsYQS5u2QR648/SvpPzquznVtjj9R3f7BERI4K42CMiRgRDFeNTqYBCTzSbzVvzA/N+tZ1cmZBM+y9O/Fm//MXKy0y7xyrWVME421rQD2yG22O8ybgVWxu36OfWJfWquopLbpNNMC4QhgNoTOwgrFhPP2u79Ff1GTKNzTlSimmVK8skujcmnZmS7I8Na2E04m7IkZecc9drtXZXjQAgRdxyPAWdnNNd6FrUy1bnYT7+NEnx4rgB2fOQTWiA5RHkQKZ01barz+pSSDtevxyNI2U1OwRaQaxu+flYHFcx/nhh09TNkk7xRPlIv1y6bG2zE7QsqguOD3CHNj6mbI6IiIiLPSJiRBAXe0TEiGCoOnunnUK52DWXlcaszl4mFr7lhjU5zKVV32mSv+lbJx427XKkUKWcv2I+rXWXyKRR2rY6b7PJyqHVu3IFVQBrS6ozbYlldRi/QDnQfHpeOu3Cqosio0NzuujGpH0ms162dqdlL2SLJvfnSQ1aZLVk0gzAcvgnY3rO9bo1SeVyOqeVgruVKOqQo8Hq886PlMabVO15pplIhMbvTYWsw1+lUye7l1sFRyBBxJdpe2uisEo8+i6qrjZNhCm05eDdsAt0/004v2jek/rCmdPaX83lEJwmcpMxt/fRa+rTne/SJCIi4qWOuNgjIkYEQxXjk4pg+oGu2HmxYz3cNmZUBjo2Y21SN+Y1Esin02X8g/yZfvloumjqbhu73C9fmpvpl58sWzL0p4saYcfpfgHrXVeYUFGs6rwBK0TcNnnGVKGwpuPPlJ0NiUk1iAfOR3nV5nUc1SXnATiun8fP6uX1XOUcHdaasH0UFtUUFMJg42ST+NjEs2hwO46c89Iniar+0rJIbsR4NyT+nTcxsomNf9dy3KcdUpuCG2QySYQp5cHnWT2ivytMWlGd1ciSI/P7/OVbdRwbVOe45xucqtpnPPc5FHZBfLNHRIwI4mKPiBgRDFWMT1cDFh7sMgOkK1aUWX+FDmUja7dU10nm2u7o7vnNaUt2cIx2W0+lr5i6mURF07vyZ/vlMwUrxj88dqJffrqyYOoeX9O2m5u09erokXm3mL3dAKCwSl5cjkAh1SGOuzES1RfsM7lO5B7taSv75i4SyQMZGvzubZu405I5K3LmMqpeCIm0rY7bHa7rAWTN6gkmo25Bx+g9CjOU0ZSz2AJWjGcRPF90qZVI2/K77A2af+auy696OXj343bHrG3rM3YOSqco6Om4sl6ccqpoiuTuc2WbFnFlQ10A09tEznLKsWjQtTDiPoijL5JXRERExMUeETEiiIs9ImJEMFzyinZAutRViCYuWLaDhNIzXZm1dpH1Jf38SE3z+5xOWw+6hYzqjaW2Vbzyop9nSHk7npw17V6Ru9Av/3nmTlNXaqqeVKnpsbx5qjmmSmSnZM+zTBsL3gzFTn+sp9etimf018JZax7kKKz6rHYo81Yvn5hQfXAqb+vGMzo/DSJTWC3Z6xI2dA6Spouqo3RTgXR97/2W1Iic0xFuDiL+8N8zEUXizFWFNRoHHTvr0mB30kzm4SLKMpRe6pg9geoNel8tLmxjEC6WNbRwvWJJV5qbpH+T92La3SBtymOQXXP7OCd740gPVtrjmz0iYkSwn1xveRH5koh8TUQeFpF/0/v+JhH5oog8KSIfE5HstfqKiIg4POxHjK8DeEMIodTL5vo3IvKnAH4RwG+EED4qIh8E8E4AH9iro5AW1Ba65hovwrKHV+asNSvcN32qX24t6fPpVHYNFuolt9axfTzR2J3Y4tW5Z83n2zIqtk5Ofs3UVcjzqdpS8dmLt81J8lzbtM9TJo0oH7EivhHBZ3YdLgCgsKJ9eH7y6hLxrC2pfDszaaM7xrPEY5618vPNE8qR9nDxmI53ywYNpUtkJso60ggS6zObg73wTJZY97ow5juaxrQTs1OU5mrqccdtX1exOGRInRDbRztPKa8m7DVrjuvnyjHnbTin88rq3IYT1bdL+rlVdCdKqodQiq22Sz+Wf0Lnv3bUmlwzha4YL6nrEONDFzuUe5neXwDwBgAf731/L4C3X6uviIiIw8O+dHYRSXoZXFcAfAbAUwCKIYQd74vzAE4M+O27ROQ+Ebmv2Sjv1iQiImII2NdiDyG0Qwh3ATgJ4DUAbt/vAUIIHwoh3B1CuDuTHb/2DyIiIg4Ez8n0FkIoisjnAHwngBkRSffe7icBXNj710Cq3sLYE119cP21S6auRgR67MoJAMXL6k74pdYN/fJ20+rlzC8/n7YpoR+uqOBRJ2XwSsumMj6V0bxbM4mVRI5li/3yYkH7rzSt+Wsbqp8FN8NsNvI5xaqLpG+xjro9OLdZy6rRaM6pq+vRaR2/J/hk3v6JtNXZn9xWt2CzH1Gy58lplL07LvGNIL+2hx5JFlLv6sr7OklNP4ytOGKSde0kvWXPRZqksxPvf8fx7Uub3IILVqfmXG+po3YeJwoU/UhRko2GvfDtNb1Xs1v22EwekpnVm6J50b4cG9PExV+wOvvO9QzX4y4rIosiMtMrFwC8CcCjAD4H4Ed6zd4B4JPX6isiIuLwsJ83+zEA94pIgu7D4Q9CCJ8WkUcAfFRE/i2ArwL47QMcZ0RExHXimos9hPB1AK/a5fun0dXf949UCmGiK+ImLtMwizIdl3aXvYIqGyoif7V6yjS7XFZuuTvnbAqpxayK3VtEwFZqOw46Iij/Ytny0jPpwJGcekud7wo+fXBKKU4ZDABNIsBoeM84MpuwiJy4KCxWBTx5RXpCG0/nnJ5AODVe7JfrHWsC3Kjp/BQv6Jxmtp34SaQXzC8PAKmm3lp8XtntAamGAaQd/z6njubfZTct6UdmQ89TGo4QhExsUuGwN3vrd1IqgleO2PNkM9exORvNlk20rkk8+qWiVTHTZeKed+dJmaSRormaOG355csUKTqWszfFzmmmrsf0FhER8dJAXOwRESOCoQbCtHMJSjd1d7/LS/Y54wkDDFjqIa6tZNXuDl9aVTFnZcnust90RL3tfujog/0yU1MDwJWWiq2Jc0/jtlVy90qnXPbRjIp2taxLmUQbrF705QiXzGXywnP0wI05/V1nwepD4wX93CTx/M4Zq9bMZ3S7/Ex13tStbmraIeaI67ggi/bEYD5Apndmlc17/PGOeys32OqQIS65dMWK6qkiWV5chtfOlOo8UuWB2EndvFlVl/Jx56FHQUSJc/1co5RV2+t6cZNte19xGqqOSw3VmtRJYdKLu+fPmXaPbakFq9yyFoOde/V8MviaxDd7RMSIIC72iIgRQVzsEREjguHq7Hlg4+VdXaYx6/Q/SuUbvPmgwUH7qgulXSoe1hObaWtSO5dWO9dfZZWn+9XTNurtsZrqRZeqNpdxlhSvGinStZadxhTp8OI8nYTSQOdyVvesr6j+Z+bDkTW053SDYycF9g7yRBZ5gsxrp/M2QpBJPJlYAQAa20RK0abUy86zMZnUcXgCRE6hlCmTSbHlrnt2cEQcm+UyW3pe6aL1YgulwTEXUtBx1U/oedbn7DUrn9Bx1I/aDaRF8kTcrNr7antF9zfSG9onk3IAQGOePPny9p7ITuo15DRR04k9z//uiEZhfmn7JlPX6u3PZFNRZ4+IGHnExR4RMSIYbhbXLFA51RUzwrjzdCJxES5oP11U0T27RUEJrovGjJaDMxM1iOPuqXXlg1+pWBPdFHmdrVWt/LxZVvNMh/jPm3U7jYHqUhkr+i6RB9ZGyfYfiMSgSXzwMua44cdU7GOOdwCYyuv4j+X1WNvOU5DTXj27MWPqkk3yfqN5TM1YlYHPMynbazYo+IW53vxnT2gyfllF2kyRvOS2rNje3rZBT4zUrIru7YKOcfuUNY1Vj+h1ykzbYJo6eQPWXCZbIRWT01DVF911Oa4el5OO86/Rpiy3bT3W2ZpNkdYhG/SN+XVTt+PdmYlifERERFzsEREjgrjYIyJGBEPV2VOZNsaOd/WrWtXlBmsSGaCLiEuzGYP0uoZVt9Ehc5XPv9ZpqF60eWZGy05RDOOq86RyzmxGfba3dPzScpzpzF0+bU+mTRzqLbc3AXKtnZpTvXTC6XhF3jtwnPWzOSWZrJJ5cKVuJ+vMpuqD1XVLjsgep2FOx5/P23OpEAHl1DlvQtudr915J4OzF48vOxLFLT1ealt19rDl+NkpF1uq4Ng8sjoH9Wk9uL93sKhzfJVJlIgoJsZsJOHWnJ5cs6Dtxmet2ezUTFGH5DablmnfqE5m3AuVGdNuJqN9LmVs9N0z1e4+VNNFMDLimz0iYkQQF3tExIhguOmfCJ4rK5DpLdVwkUsUJdScJN6zCZfCZ3pAjl8ACXk3TZzV/tNV59FFvPEN61iGxgyJi8ST7lMvtybI8ytjRVPma19tO7Mfie6vOKJRag0nmm0SJ/l0wYqV8znto0Uy81rd8plVGi6UjrGgIu3CnJq1yjWreuXPqAwu3jOOxPN2nlMr2UOxp1264tSmepPKOm/eqCd5Gse8ZQTZvlUv4taNevDacStKFwrkDejSSk+N6xx7Lr+EVLvamN5jPhLy4pZGU/rU120iNEkn+ru5fMW0Y+7EzbZVvc6Vuuft7xVGfLNHRIwI4mKPiBgRDF2M3xHfgxOVUls6lJTLCMqSSYc53RbtLjVn8GxvuuB+CppJ6sTzdd4RITSJGCJjn4WcFoizrFaOmWbo0K769LgV+3KJHm9p3nKMsYg4TvTOT60dN+2mx7TdDZMbpo5JKdaaKrpvN2ygCs9wftaqAkyPvLGpfbSv2J3uSdoQ9qQUzQlSyziuxG3aB6KITqr2WkitSe10TMHpgKlx9USs32iJODZu1fuqcouqAuNz9rpUy3q/5Ao2EKZN9+pm3c4Bzw+L/6yWegRnhclQMNORKVWbWCUDgAQ6yc9U7HnupCPz1hlGfLNHRIwI4mKPiBgRxMUeETEiGKrOnqQ6mO3psMz/DlhVzhMbBk4HTIQJWefp1KiqOSm9ZU0QTCbAZqKkbpXN3GX1zpKq3RPoTOqYk6aaUprjdhrrJ7XPfNqOkU0yExnrkZYmxffRDU0x7UkOFwqqyx3LW72/Tc9vNrd5UgMfLcdYvaDmKiZOzG+4aMQKcf07EooUnRqnZe44i9/YMnHPu1TMIA5/VCnqLe2iDKfVhFk5avdqavN0rcf0nMXNKevp3rNxk+axs2r3PgxpKOUL8HsTIH1eXCTk9ISe282TSjLC+zsAcKE20y+v1awptdpLQRaizh4REbHvxd5L2/xVEfl07/NNIvJFEXlSRD4mItlr9REREXF4eC5i/M+jm9BxR379dQC/EUL4qIh8EMA7AXxgrw7andRVHF476ORJtHF86gkFpGSyKtq0nbiVuqLPm0zJijOcMZV5zNMVl0ZnXcXiULdituS1/05C/XvJiUREbwrhQAcmKgCAcpPMPyT+LxVs4Mcrp85jEJhbjlUG5jYDgGe2NRCmfcmSaGTJI5DVn6yNvUArP1hkBEngTaVpQ+GKy/ZKHoyevKIzTp5xp9X8mNq0Jqnmgh6ATaIA0KbAplBWHaKZdkE35OlYXbMqZm5Zr1PHrZgWvS8Dn4CbmlSBuAedae+mGRXdm+RiWG3YcRTr+tlnDt65X7x6YsYwsIYgIicB/LcAfqv3WQC8AcDHe03uBfD2/fQVERFxONivGP8fAPwy0LfqzwMo9nKzA8B5ACd2+R1E5F0icp+I3NfequzWJCIiYgjYT372HwKwEkL4yvM5QAjhQyGEu0MIdydTY9f+QURExIFgPzr7dwH4hyLyVgB5dHX29wGYEZF07+1+EsCFa3UUgqBe6+kaidUtxmZVD5t1Lqas59aI/K/udM1cifjlrUUKaeIuz1RUl002rLQRaqzcW/Md65CtAvGpO3MSZQk2ujcArFZ0zFmnN05l1dR3kjjfv33qGdPudHa1X15p2cg5Jpbk6KoHz1mX2+S8thvbcFF7tK3C+xueeMLopU5VbNKw0qRip+2lhbSJ5MKRUdYndL5DSgcVbpgy7RqTlAbbkVIkFa0zs+0iGsvb2r/U7IkyV2c7b/eTOI11qOi92ZryHPv6mV1iAaBCedu2GnowT0RRpP2uUsXufd26dKV7nOtJ2RxCeE8I4WQI4TSAHwPwlyGEnwDwOQA/0mv2DgCfvFZfERERh4frsbO/G8AvisiT6Orwv/3CDCkiIuIg8Jw86EIInwfw+V75aQCveU5Hk4B0z8RxYqFoqk6Mq9w9l7WmlUc31ZvsyStH+uXstoseItNQruhMPBRdVVhR2VRKVozvNFXsTk1ambAxo2Ilpy3y4i1zxZcag90PPBHCXTNqUrslv9Iv3567aNqNi5puyh3r0XWloWaor5451S+nz1mxL7dOJCDWwmOj1GgaO/5UqK45aeebTXasCnhuhdq8ftEac6ZUEvHbWa2rT1txvzY/WKXiFGGsJjQuu/0jpjl0Hm5t4vDPPOuiKRs8j6ySOGIVMsF683OT1C1WU8tVe20blB7Mp5Damun22e5ED7qIiJFHXOwRESOCoQbC5NJt3LzQ9RZayluvME5tc//qKVN3ZVNF09QmBbs4L7nspopR2ZLbDa3SDnyF+MxajjBhjDKpLtgt2+YUpUWixySLbwCQzakcPJG1Xng58qR63cLjpu7VhTP98nxK1YtasJfpC9Wb++Vn6oum7u8vnu6XkwsqLma23Y47SbHeK0zoM6soXkRuFwbv/CZk1ODAo8aUH8dgD73cJhGJkMciE2N0+yBx30q+hlQjt6oXzWdJYguE56cDEat4lY2P3Zyn37ldcSazqLoUUrUBfIBe1eCd/4bzMt2x+qSu14MuIiLimx9xsUdEjAjiYo+IGBEMVWfPplo4MVYEYFMTAcCF8ky/vLZtA/MbJYpmq+5u0gGAbInJC61OI5QiKBA3PKYmTDtkdEoa89ZEwlFezIXenLM63olp3Y/wEWuvnjrXL/83Y0+YuqVETXFN2sP4k81vM+3u39Q9jcfXrM5eflr3GXIlHq9phjalyvJc7py+ilNqhcxgfTB7xSqzbL5rjdM4nPmOOfZri7b/wooOjPcAvF7Oew4dP0ZS79kMl3YZpBpkOsxsOM9J6rM17tOFDSABcR6iQnNcL7tJ4LTPlAYts2UvDO8P+P53vCXDVSGYivhmj4gYEcTFHhExIhguB52EfiZKL8azh1HbcW5LRcUqFqlSDWd6K6k9xVsg2gV9rnUo0CFVcNlkx/Rzfc6ZSGaIK35JDzB51MqETBrBmTcB4GRWiQomU1YP2SYT21+Wb++Xv75to4cfWVaPwvp5q4bk1ikwg65uO+/ET5q69phVeTiTrbAnmAsQyV/U+fGBR0RxbjzvvKddiwJEggsyqXCKLTI7iZOchcxoLKoD1vTG51w94rjnKRNv2p0LqyG1JWeqJW+7FHEnJi7IqdWkuas7fkQK4OKcCVcFWPG6qNn39KWNbnBQsxXTP0VEjDziYo+IGBHExR4RMSIYqs7eCdLX1YsN6wpYI4KK5razrbA5hfT0TNnqXRwZdVUkGqcUbg8wwwFoTqiiVJ+0+l9jhsqku81mLYHgbE5dXRezVp+fITdY1ssB4G+Lt/TL57f1YN4UWSNCxNyWHWMwRI/kbppzOnt6sBmH9W1ZV4U7u+l44yk4MWUp9iGcj4344H1OOEzp3M3M2AhEdiutj9E94VJ6pzf1pH36bCbL4Llpi23H2ydhj1WRLtn7pUV5/UB6utHRAXTIpOaJPlg3Z7NnUrVjzK+RPr9uB1nrcduH5uD3d3yzR0SMCOJij4gYEQxVjG90Epwrd/nKt1zq2ysbShQhOWu24Iih7AUdcjtr5aHKkcGi0vgK8YenyQyXtVPQzpOZzzk6GQp4Iglotu0zk1Mt1V1I2Z9svrJffnDD8sKdW1Eud07/2ylZGwx7ePlsP81ZEt0LNI9ZJz+TKJyqWJEzS2meEhLPxUWKsfhZn7V1zNvPYxRnVuX0xRlnrpouqNtcc0p1BiZ4AIDmUR1/6bzlp8Oq1pGDoiXoAMAcIB2v1vBt5aLZ0ms6Ce0Jui6uj6S8x3uVrnWKLHs5xw04+axeQ8+Pn9S7n5011yC+2SMiRgRxsUdEjAiGKsa3QwqbParcjYolPuP0OzOzdgf78tn5fplFwtqiFXM4uCPrdqkhKmI1xkl0rFpxiznSQjLYG4uzxK5nrej4YFvrlh2P3WZN1ZcrK07k5JMjT6p00YrZvOPcmHVcZyy68/CrzmuLKJZza253m53+mIPOeXSxN5wPQGkTKUVma4/deFInWk4dylOaJFb6xjJWBk+o0/S3Fk3dw0+p92GKSCiuGscAURqAmQPvtcmvyzRZK/yOPgfyeCIRVpU4M25uyw4yXWUyD9v/zvl49WTAUCMiIl7KiIs9ImJEEBd7RMSIYKg6ewhAo6fPzo7ZaLBbp6/0y48Vj5g61pk4gL+16BQUilxqF5ynE0W9cX6mtKWoNzpP0/Fa8LFZB+ts2mncTut+hI9CqhZJ+3Qpp9lzLVWnfQWn47FJUFpuX2GAp1bKRUkxb7xPycS6Ph/LE1My6QVzqwNAm86FzZmekCG9rXWbmy6dV0aVZ9bTfRpsfmUtuJwD33OHkno+uKKmzu2S3TNq055Gx5sii2Sm9Do7b1Ww/u7uK/b2TDXs/ka+qJOVK+p5ZpdtmihOP9aYtF6VnoBkN8Q3e0TEiGBfb3YROQNgG93ceK0Qwt0iMgfgYwBOAzgD4EdDCBsHM8yIiIjrxXMR478vhLBKn+8B8NkQwntF5J7e53fv1UG7k0Kx3BWfbltcMXVPbCqX2sqmlZ9ZVO2cUPm5ULBifJo8sJpz9tTqVbIbFSnAYsEPkt29XPAIkyuQqeYqUZp+V92w4mKqrCLiVSQM1A+L7t4UxJ/FibSdzO4cZFeZe/bIzsrpoAxXnWvXLtB8OI+x/IzakxrjlHk3b90S0yTWM889ACwXtW16Qa97vmDdxKbyeqxiYud7Lqfy9N1Hn+2Xz5Wsy99GTX+37TKk1hNVLwrnnYhPXPdsNuN0YwBQWNOLxplrAaCdZw46IvNw3p3S0D6Suu2jn8l2MAXddYnxbwNwb698L4C3X0dfERERB4z9LvYA4C9E5Csi8q7ed0shhEu98mUAS7v9UETeJSL3ich9ra3Kbk0iIiKGgP2K8d8dQrggIkcAfEZEvsGVIYQgsnvemRDChwB8CAAKLzs+mIs4IiLiQLGvxR5CuND7vyIin0A3VfOyiBwLIVwSkWMAVvbsxOGRy0fNZ8Ol7Qj5QASICemGPkpqknS3k4vLpq7UVLPF6oKaLbacftYml8206z9FEU+BdOXgHmHVkh5LnMmLXV19FBmTJe4ZvcQ6vNPR0uTiy2mTfR41/p1P2cw53Jp7EEIKpQ0eG7fsFVNjqmOnyK22MeNIFyiCrbRqzUkpMsu1L5FOPWn1/gqZpDYL9noWC/q7k5PFfvmGCbuXzJ+9ae9L6Rv65TKs+3PmMR0j5xccu2TnI7NCLuDuhgk5PR8mU/HEKo1paudl8n28Rq8pxovIuIhM7pQB/ACAhwB8CsA7es3eAeCT1z5cRETEYWE/b/YlAJ+QriNKGsB/DiH8mYh8GcAfiMg7AZwF8KMHN8yIiIjrxTUXewjhaQCv3OX7NQBvfC4H67RTKuIWHTMEp9Fx5BUmMqqlZrNGxpFckBhfa9kQrZdNqofesQLJtPOmmRHhcom1ea3U1CTYIHeytar1/GJxv+Q4wRoUHeaj2VisZ2+1vUgjPJjwIL+mx/JRXpyGKaSs2NpkkXBK52Bx0eoCC2Nq1prK1kzdZFqvRYbIPNLuZHKkk6ROW1n0i1dO98vnLtKFcvz17S09mZJTAet1ncgKpUbOOhXt+ISSxS/mrefabQuqoT6d2N9tNtWElyH+98KqE5pJdJdt5163pcdLkRrSOmJThrMnYjvnozpxTUQPuoiIEUFc7BERI4K42CMiRgRDjXpDR4Ad8kRnlhfWtXzWXc5/Nak6XiZjdeqJjNqrmLsdADKkK945caFfPuoSe92evdwvp9wYP7Lx2n75axvKgNJoOddc0hPnlqyeWyO9sZK2Nq+woXXszpouOVdXsup4ZpLsFjGdbOs5p5x7ZUhrn1UXmcfpqBsUfZd1+uqrZ9X9dMzZCicpLPAU5bdrO5vRuCecJ3xL4WK/fP/cjf3yV1ZPmXbL68r403Y6e6ejx2sSg1C1bveMihQFNz9ldeqbptb75ZfNrZq6r1XV7Fe9pHs6BcfrnlS1LpWzx5a2zmubzIi1JXt/1KeJKDXt3Z9713cPE1x8s0dEjAjiYo+IGBEMV4yXgNDzuhJHEJBQSl4f5dVYUDEnO6ni4uKEFbdum1avufmMrWNSwo2WemrlxcrB32ioZ1/bPQtbJBKyB1255tI+k7i4vmo9rtJkVkyVXFQTSclM0jhx3trNJi7qHHSSfdhcAGRK9jw7xJ0vzkwpxJbYSbTuQnrOtPtyRkXrb58/a+rm0mpOOp1WMf5GZ/J6ljwWix3r/baYVhXo1RPav1evnsxrxORyyc43e3EnlEq77MT4ckmPfWllxtRt11S09mL89IQyfxRn9b5q5ey90y6kdy0DQJOjAikteKvgOPbpo18jrR1T3AFFvUVERHwTIS72iIgRwXDF+ACguZOmxsobrXkK7ncivumCJLhK04qfxabuXmb28NTilEx/V7nFtJvLVnb9DQCcztOuMolbHSc7rZXVo27LcZ11VlRcTNXs79KUtZM93sYvWxHcc5OZ/nM6J50xLacqdrdcEg64cDvkl5mEgbjWgxV9n0g0qrnqVIE3H3tk1/FNpGyG3smOisE1p1JNkdmhTPmZph1pXj7R333bwkVTlybvvQxN6vnKjGm3mlcR3GfNbVKwztlNS3qRJ4tQi7Lm8s45AGQpqKc+Y+/v2iynI6MK5/WYphwH3grT6GUc3ouLLr7ZIyJGBHGxR0SMCOJij4gYEQxVZ5e2INOL9GrOOJ16Wj2u5k9ZsxmbQprEu77asc+qRYrCunPikqmbJSJvjmybSttorVJbdcP8Homzvn3imX751oIlyjhX1witx7YsW9eTeWW4rJ6zZiJUd7eb1OatPpwuk95ftWOUjip6qQaH0dk+UzU973TazmN9TucgQ1544xft+OqzqmBezMyYuk+1X6F93KB6bRuPmnYZ0VuwFux5ZkV19lsyGrW43XYknlOqy260bAQie/bxXo33sGxQ8rSWu684JTd74QHA5rYej9M0N6bsXG28nPZSXMBnm06b92oybmumsE7XtmnNj/2IuOhBFxERERd7RMSIYLimN6AvZjB/GQAUcpT2xgVczM+pPLMWNKCgVbHD36qrePtszXp7ZSiV8RgFX3izGYv4Pmij6YnTeziVWTOfT2dV5ORgDgB4YEL5zP46c7Op2zinZp02eRSuF+w4gqjoOH7ZBpJIi0gSKAdTqm3nVMpqvpKsY8MQnUc2E9XmvZpBKZsdScf6ppqvPvjA9/bLD95ywrR7xaQGJR3PFE3daRLdjyYqdv+DvPXWm6G6J+tWbfpGWT0iz5dn+uW6C15q03WvNux81Or6udWw90DYJG57Iq+onHB6E3u/1XwQC5VJleOUUYAV8Zvjdr53NM7daV97bQZXRUREvJQQF3tExIggLvaIiBHBcE1vLSB/pauTbE9b3SezqDrlYsHaHCazqpe2KcdavWmHv7yppqxyw9o3/q5zul8ey+r+QMbtD0wTceJtU9akxii2VW8+6xLGZcjN9o78BVP35ukH++Ubcuum7o8yd/XLF9nc6PYmNknfTLXteWa3KEJwQ+ctJI7ckggUpGb1/qSm51af5ogsZ+6ZICLJrGPF5GizRJXNv37wNtPsGydUx36lc3V90yyRXSa6x3Aybd2YMzL4Ol1qKGnjQ9Vj/fJ2xbrtZrPaZ3nbRt8FIrT0+nZ2k6LUKKV3Z8LtkWR0Dtqbdk8gRfkFmZjE53Orslut22bZIQ2N7rIRERFxsUdEjAqGKsYndWD6TI+8omMPXZxTr6jJeStWfs/sk/3yFzM39cvrdestVWmquHVpY8rUNSll8wapAkneioTFcRXj9+KxW8hoOh9vvmOz3+W65f5mb7sbs5YI4cdv+HK//DG5u19eLlpPuxqJ2Y0L9nnNol9zisxCnmacPO1CyvZRPaK/Y35y71CYlEmETVm5cmxB526MzKqdCRux1iT+u42G9Yx7oKzkGDMp7S+TsambGEx4AQB3jKlqsL2g4vmXLt1g2m1z6qmWnY8MmUEzm85US9oAp81Kxux9xdx4knZ8gLK7ua05bo/F85+49GCddOSgi4iI6GFfi11EZkTk4yLyDRF5VES+U0TmROQzIvJE7//stXuKiIg4LOxXjH8fgD8LIfyIiGQBjAH4FQCfDSG8V0TuAXAPgHfv3U2AtLtyxsRF62HU+Yp6xl1asiL4d0yr/PLjR77QL3+1ctq022iqePtE7oipu7ClfRo65y2X9ZNSPP1N2RJbzM+oleBlMyqCf9+syWCNIxkVJZ+oWo+uv9vUPo/lrch5U049xpj84TOp2027c+TFVZ+1om9um7LLEj9dJ2t341tHVTUonXB8bCeoD5IkE8f6LBsUINKxImdtTPtkMX48a3WBBbK8eG6587WZfvkPm6rWvGrinGnHfHfNYG/pOm1b31BQ68eZSethWbqiYnx21c5ViqjMXfdojlNm3yztuDt+QdD8SN3OFafsapDG5jg6kKlo/+manauNlye7jo+xnyyu0wC+F8BvA0AIoRFCKAJ4G4B7e83uBfD2a/UVERFxeNiPGH8TgCsAfldEvioiv9VL3bwUQtiJI72MbrbXqyAi7xKR+0Tkvla9vFuTiIiIIWA/iz0N4NUAPhBCeBWAMroiex8hhIAB+4AhhA+FEO4OIdydzo3v1iQiImII2I/Ofh7A+RDCF3ufP47uYl8WkWMhhEsicgzAysAeeki1AnLrXZ2tctR7fumz4vH7rVnkz75d9bwfWFBd9nsnrK58uaVmriPZbVO3PqUPmie2lWf8TMbqbptbqve3StacdGVZPeWWC/q71Zfbh9j/dOqv+uWkYPcmOHKOxwEACTFMLBBzwbRLh5wr6Hw0ZhyhJRFMtLP6LK9PW4+x6rzWlW40VQikO+eKZKZ05h721nLZn9Cq6q21kdL5KWVdGuxN3SMZL9hNgQx53nEk5Jltm2f79KRGHV6hPRcA6NAg82nynEw5jz9Ks+2DGwM1rc/5aDaKMmyRLu4IMJi7NLNl69gbbi9ueI562z5hB9mY7o6jM5ir9dpv9hDCZQDPisiOn+MbATwC4FMA3tH77h0APnmtviIiIg4P+92N/2cAPtLbiX8awD9B90HxByLyTgBnAfzowQwxIiLihcC+FnsI4QEAd+9S9cbncjBptpG5VAQAjKVmTF1zTE1g7LEEAA+c0aydDfK8e2rKmtdeO/GU9uF44+eIg+47ZrU8m7X2jQsTqgqcW7euA7UmmWfWVF56/JGTpt2v13+wX/7hUw9gv/jKuqovnMpqMW8Dg55KVIytZ12wxBx5vFGwUW3OmnsqJzjDq+M4Jy8xE5hRtcfi9ETNKSvepsiDLKGUT62mM2uRqF7ctOpQoAARQ/6Q2HE8dVnVoXbVy+A0HwUdUypl+0hRWq7WpCOoGCd52mWJFR4jdelF8IQCaLwnIjuTdjLaScE6WKI2p9epetRdi+ne+JPBLnTRgy4iYkQQF3tExIggLvaIiBHBkHO9BUizq8yk6lanHl+mXGwz1uRVp2D/M+tq8io1rDnpgQ3Vnb9l+rKpmyDlc5bSOd81+axpd8uYuqw+kj9m6u6H9l9N1ESX3rR63PKTaqL7wMrrTN1NJ1QR87nqKpRG+EpZ9dfE6Zf1OpFXON2wOUGul0Q20TzpfF23tI/cutXn8+tMWqnfVxdtu+qS6tu5YzZCcGlaTZ9MEOLPeaNEEXxr1nU5Keu8sutopuRC+Gi7wFvU2BTVotx3zUkXeTamnRSO2T2SFkXmNZxbcOD3JY2DI9kA63KbWEsqOmQtzFKq7uDch5vUzudd2A/imz0iYkQQF3tExIhAQhi8Vf+CH0zkCro2+QUAq9doftB4MYwBiOPwiOOweK7juDGEsLhbxVAXe/+gIveFEHaz24/UGOI44jiGOY4oxkdEjAjiYo+IGBEc1mL/0CEdl/FiGAMQx+ERx2Hxgo3jUHT2iIiI4SOK8RERI4K42CMiRgRDXewi8mYReUxEnuwx0g7ruL8jIisi8hB9N3QqbBE5JSKfE5FHRORhEfn5wxiLiORF5Esi8rXeOP5N7/ubROSLvevzsR5/wYFDRJIev+GnD2scInJGRB4UkQdE5L7ed4dxjxwYbfvQFruIJAB+E8BbANwB4MdF5I4hHf7DAN7svrsHXSrsWwF8Fo5X74DQAvBLIYQ7ALwWwM/25mDYY6kDeEMI4ZUA7gLwZhF5LYBfB/AbIYSXAdgA8M4DHscOfh7Ao/T5sMbxfSGEu8iufRj3yA5t++0AXonuvLww4wghDOUPwHcC+HP6/B4A7xni8U8DeIg+PwbgWK98DMBjwxoLjeGTAN50mGNBNwfA/QC+A11PrfRu1+sAj3+ydwO/AcCn0aWpOIxxnAGw4L4b6nUBMA3gGfQ2zl/ocQxTjD8BgEPMzve+Oyzsiwr7oCAipwG8CsAXD2MsPdH5AXSJQj8D4CkAxRDCThzdsK7PfwDwy9CYsflDGkcA8Bci8hUReVfvu2Ffl+uibb8W4gYd9qbCPgiIyASAPwTwCyEEkxZmWGMJIbRDCHeh+2Z9DYDb9/7FCw8R+SEAKyGErwz72Lvgu0MIr0ZXzfxZEflerhzSdbku2vZrYZiL/QKAU/T5ZO+7w8JyjwIb+6XCfiEgIhl0F/pHQgh/dJhjAYDQze7zOXTF5RkR2Ql0H8b1+S4A/1BEzgD4KLqi/PsOYRwIIVzo/V8B8Al0H4DDvi670ba/+oUaxzAX+5cB3Nrbac0C+DF06agPC0OnwhYRQTeN1qMhhH9/WGMRkUURmemVC+juGzyK7qL/kWGNI4TwnhDCyRDCaXTvh78MIfzEsMchIuMiMrlTBvADAB7CkK9LOGja9oPe+HAbDW8F8Di6+uG/GuJxfx/AJQBNdJ+e70RXN/wsgCcA/H8A5oYwju9GVwT7OoAHen9vHfZYAHwbgK/2xvEQgP+t9/3NAL4E4EkA/wVAbojX6PUAPn0Y4+gd72u9v4d37s1DukfuAnBf79r8MYDZF2oc0V02ImJEEDfoIiJGBHGxR0SMCOJij4gYEcTFHhExIoiLPSJiRBAXe0TEiCAu9oiIEcH/Dy2GQh+bTGLgAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]}
Defect_013.png ADDED
Hole.png ADDED
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Textile Defect
3
- emoji: 🐠
4
- colorFrom: green
5
- colorTo: yellow
6
- sdk: streamlit
7
- sdk_version: 1.21.0
8
- app_file: app.py
9
- pinned: false
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1 align="center"> Textile Defect Detection</h1> <br>
2
+
3
+ ## Introduction:
4
+ Fabric defect detection is a necessary and essential step of quality control in the textile manufacturing industry. It is the determination process of the location, type and size of the defects found on the fabric surface. Traditional fabric inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial. Lack of concentration, human fatigue, and time consumption are the main drawbacks associated with the manual fabric defect detection process. Applications based on computer vision and digital image processing can address the abovementioned limitations and drawbacks. Here we have used machine learning and deep learning approach to identify/categorize defects.
5
+
6
+ <h4>Youtube Link : https://youtu.be/Vw78gLfCQ44
7
+
8
+ <br/>
9
+ <br/>
10
+
11
+
12
+ ## Instructions For Running WebApp on local server:
13
+ 1. Go to terminal.
14
+ 2. Create a directory tex-detection using ```mkdir tex-detection```
15
+ 3. cd tex-detection
16
+ 4. clone the repository using the command ``` https://github.com/Rajvardhan7/Textile-Detection.git```
17
+ 5. Install all the requirements using command ``` pip install -r requirements.txt```
18
+ 6. Run the commmand ```streamlit run app.py```
19
+ YOUR APP IS READY!!
20
+
21
+ ## 1) Defect Detection
22
+
23
+ Technology/Framework Used : Numpy, Pandas, Matplotlib, CV2, Skimage, Scipy
24
+ <br/>
25
+ <br/>
26
+
27
+ <h4>Hole Detection - circular boundary using Hough Transformation:</h4>
28
+ The Hough transform is a feature extraction technique used in image analysis, computer vision, and digital image processing. The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure. The algorithm converts RGB image to Grayscale for improved detection. By optimizing its parameters, we were able to get clear accurate bounding circle around the holes.
29
+ <br/>
30
+ <p align="left">
31
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/download%20(1).jpeg" height="210px"/>
32
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/Hough.png" height="210px"/>
33
+ </p>
34
+
35
  ---
36
+
37
+ <h4>Gabor & GrayScale Filter Masks </h4>
38
+ In image processing, a Gabor filter, named after Dennis Gabor, is a linear filter used for texture analysis, which essentially means that it analyzes whether there is any specific frequency content in the image in specific directions in a localized region around the point or region of analysis.
39
+ In the third image, reduced frequency/light/brightness of overall image shows a distinctive dark patch indicating a defect.
40
+ <br/>
41
+ <p align="left">
42
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/download%20(1).jpeg" height="150px"/>
43
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/GrayScale%20Transform.png" height="150px"/>
44
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/Gabor_filter.png" height="150px"/>
45
+ </p>
46
+
47
  ---
48
 
49
+ <h4>Masking or Image Segmentation</h4>
50
+ The defect is clearly visible after masking the image.
51
+ <br/>
52
+ <p align="left">
53
+ Normal Fabric Image
54
+ <img src = "https://github.com/Rajvardhan7/Textile-Detection/blob/05a14835ede3dfe1076ec69b992f88df957629f2/Defect_013.png" height="150px"/>
55
+ <br/>
56
+ Masked Image
57
+ <img src = "https://github.com/Rajvardhan7/Textile-Detection/blob/05a14835ede3dfe1076ec69b992f88df957629f2/013.png" height="150px"/>
58
+ </p>
59
+
60
+ ---
61
+
62
+
63
+ ## 2) Defect Classification
64
+
65
+ Technology/Framework Used : Numpy, Pandas, Matplotlib, Sklearn, Keras
66
+ <br/>
67
+ <br/>
68
+
69
+
70
+ <h4>Using CNN Layers : Predicting Color Blending Image Correctly</h4>
71
+ The images in the data set were categorised into 'Color','Cut','No Defect','Hole','Metal_Contamination'&'Thread'. Developed a Convolutional Neural Network Model(below figure for reference) to train the large image dataset(about 90,000 samples) in order to get high validation accuracy.
72
+ Able to get good accuracy(about 90%) in few 50 epochs only.
73
+ <br/>
74
+ <br/>
75
+ <p align="center">
76
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/5894d40475097a650a885e8e1612a532c2781954/Model.png" height="400px"/>
77
+ </p>
78
+ <br/>
79
+ <p align="left">
80
+ <img src = "https://github.com/Rajvardhan7/Textile-Detection/blob/8e9d1a10667f02e4c8f3086524715406572326a8/Thread.png" height="350px"/>
81
+ <img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/Color_blending.png" height="350px"/>
82
+ </p>
83
+
84
+
85
+
Thread.png ADDED
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import cv2
3
+ import os
4
+
5
+ from skimage.filters import gabor
6
+ from skimage import data, io,color
7
+ from skimage.color import rgb2gray
8
+ import numpy as np
9
+ import plotly.express as px
10
+ from scipy import ndimage
11
+ from sklearn.cluster import KMeans
12
+ import PIL
13
+ from PIL import Image
14
+ import streamlit as st
15
+
16
+ st.sidebar.title('Textile Detection')
17
+
18
+ st.title('Detect Defects on clothing items')
19
+
20
+ def f(a):
21
+ # Read image.
22
+ img = a.copy()
23
+
24
+ # Convert to grayscale.
25
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
26
+
27
+ # Blur using 3 * 3 kernel.
28
+ gray_blurred = cv2.blur(gray, (3, 3))
29
+
30
+ # Apply Hough transform on the blurred image.
31
+ detected_circles = cv2.HoughCircles(gray_blurred, cv2.HOUGH_GRADIENT, 1, 20, param1 = 50,
32
+ param2 = 30, minRadius = 1, maxRadius = 40)
33
+
34
+ # Draw circles that are detected.
35
+ if detected_circles is not None:
36
+
37
+ # Convert the circle parameters a, b and r to integers.
38
+ detected_circles = np.uint16(np.around(detected_circles))
39
+
40
+ for pt in detected_circles[0, :]:
41
+ a, b, r = pt[0], pt[1], pt[2]
42
+
43
+ # Draw the circumference of the circle.
44
+ cv2.circle(img, (a, b), r, (0, 255, 0), 2)
45
+
46
+ # Draw a small circle (of radius 1) to show the center.
47
+ cv2.circle(img, (a, b), 1, (0, 0, 255), 3)
48
+
49
+ break
50
+ return img
51
+
52
+
53
+ image = st.sidebar.file_uploader("Upload an image", type = ['jpeg', 'jpg', 'png'])
54
+
55
+
56
+ if image is not None:
57
+
58
+ option = st.selectbox('Choose an option',\
59
+ ('Original Image', 'Hough Transformation', 'Gray Scale Transformation','OpenCV'))
60
+
61
+
62
+ image = Image.open(image)
63
+ image = np.array(image.convert('RGB'))
64
+
65
+ if option == "Original Image":
66
+ st.subheader("Original Image")
67
+ st.image(image, use_column_width = True)
68
+
69
+ if option == "Hough Transformation":
70
+ st.subheader("Hough Transformation")
71
+ b = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
72
+ filt_real, filt_imag = gabor(b, frequency=0.05)
73
+ gray = rgb2gray(image)
74
+
75
+ gray_r = gray.reshape(gray.shape[0]*gray.shape[1])
76
+ for i in range(gray_r.shape[0]):
77
+ if gray_r[i] > gray_r.mean():
78
+ gray_r[i] = 3
79
+ elif gray_r[i] > 0.5:
80
+ gray_r[i] = 2
81
+ elif gray_r[i] > 0.25:
82
+ gray_r[i] = 1
83
+ else:
84
+ gray_r[i] = 0
85
+ gray = gray_r.reshape(gray.shape[0],gray.shape[1])
86
+ fig = px.imshow(gray)
87
+ st.plotly_chart(fig)
88
+
89
+
90
+ if option == "Gray Scale Transformation":
91
+ b = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
92
+ st.subheader("Gray Scale Transformation")
93
+ st.image(b, use_column_width = True)
94
+
95
+ if option == "OpenCV":
96
+ st.subheader("OpenCV Algo")
97
+ img = f(image)
98
+ st.image(img, use_column_width = True)
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+ else:
107
+ st.write("please upload an image in the formats shown above")
download (1).jpeg ADDED
requirements.txt ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==0.9.0
2
+ alabaster==0.7.12
3
+ altair==4.1.0
4
+ anaconda-client==1.7.2
5
+ anaconda-navigator==1.9.7
6
+ anaconda-project==0.8.3
7
+ asn1crypto==1.0.1
8
+ astor==0.8.1
9
+ astroid==2.3.1
10
+ astropy==3.2.1
11
+ atomicwrites==1.3.0
12
+ attrs==19.2.0
13
+ awscli==1.18.56
14
+ Babel==2.7.0
15
+ backcall==0.1.0
16
+ backports.functools-lru-cache==1.5
17
+ backports.os==0.1.1
18
+ backports.shutil-get-terminal-size==1.0.0
19
+ backports.tempfile==1.0
20
+ backports.weakref==1.0.post1
21
+ base58==2.1.0
22
+ beautifulsoup4==4.8.0
23
+ bitarray==1.0.1
24
+ bkcharts==0.2
25
+ bleach==3.1.0
26
+ blinker==1.4
27
+ blis==0.4.1
28
+ bokeh==1.3.4
29
+ boto==2.49.0
30
+ boto3==1.13.6
31
+ botocore==1.16.6
32
+ Bottleneck==1.2.1
33
+ cachetools==4.0.0
34
+ catalogue==1.0.0
35
+ catboost==0.20.2
36
+ certifi==2019.9.11
37
+ cffi==1.12.3
38
+ chardet==3.0.4
39
+ chart-studio==1.1.0
40
+ chatbotAI==0.3.1.0
41
+ ChatterBot==1.0.8
42
+ Click==7.0
43
+ cloudpickle==1.2.2
44
+ clyent==1.2.2
45
+ colorama==0.4.1
46
+ colorlover==0.3.0
47
+ combo==0.1.0
48
+ comtypes==1.1.7
49
+ conda==4.10.1
50
+ conda-build==3.18.9
51
+ conda-package-handling==1.6.0
52
+ conda-verify==3.4.2
53
+ confuse==1.1.0
54
+ contextlib2==0.6.0
55
+ cryptography==2.7
56
+ cufflinks==0.17.0
57
+ cycler==0.10.0
58
+ cymem==2.0.3
59
+ Cython==0.29.14
60
+ cytoolz==0.10.0
61
+ dask==2.5.2
62
+ dateinfer==0.2.0
63
+ DateTime==4.3
64
+ decorator==4.4.0
65
+ defusedxml==0.6.0
66
+ distributed==2.5.2
67
+ distro==1.5.0
68
+ docutils==0.15.2
69
+ en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.5/en_core_web_sm-2.2.5.tar.gz
70
+ entrypoints==0.3
71
+ et-xmlfile==1.0.1
72
+ fastcache==1.1.0
73
+ filelock==3.0.12
74
+ Flask==1.1.1
75
+ Flask-SQLAlchemy==2.4.3
76
+ fsspec==0.5.2
77
+ func-timeout==4.3.5
78
+ funcy==1.14
79
+ future==0.17.1
80
+ gast==0.2.2
81
+ geneticalgorithm==1.0.2
82
+ gensim==3.8.3
83
+ gevent==1.4.0
84
+ gitdb==4.0.7
85
+ GitPython==3.1.14
86
+ glob2==0.7
87
+ google-auth==1.11.3
88
+ google-auth-oauthlib==0.4.1
89
+ google-pasta==0.2.0
90
+ graphviz==0.14
91
+ greenlet==0.4.15
92
+ grpcio==1.27.2
93
+ h5py==2.9.0
94
+ HeapDict==1.0.1
95
+ html5lib==1.0.1
96
+ htmlmin==0.1.12
97
+ idna==2.8
98
+ imageio==2.6.0
99
+ imagesize==1.1.0
100
+ imbalanced-learn==0.6.2
101
+ importlib-metadata==0.23
102
+ ipykernel==5.1.2
103
+ ipython==7.8.0
104
+ ipython-genutils==0.2.0
105
+ ipywidgets==7.5.1
106
+ isort==4.3.21
107
+ itsdangerous==1.1.0
108
+ jdcal==1.4.1
109
+ jedi==0.15.1
110
+ Jinja2==2.10.3
111
+ jmespath==0.9.5
112
+ joblib==0.13.2
113
+ json5==0.8.5
114
+ jsonschema==3.0.2
115
+ jupyter==1.0.0
116
+ jupyter-client==5.3.3
117
+ jupyter-console==6.0.0
118
+ jupyter-core==4.5.0
119
+ jupyterlab==1.1.4
120
+ jupyterlab-server==1.0.6
121
+ Keras==2.3.1
122
+ Keras-Applications==1.0.8
123
+ Keras-Preprocessing==1.1.0
124
+ keyring==18.0.0
125
+ kiwisolver==1.1.0
126
+ kmodes==0.10.1
127
+ lazy-object-proxy==1.4.2
128
+ libarchive-c==2.8
129
+ lightgbm==2.3.1
130
+ llvmlite==0.29.0
131
+ locket==0.2.0
132
+ lxml==4.4.1
133
+ Markdown==3.2.1
134
+ MarkupSafe==1.1.1
135
+ mathparse==0.1.2
136
+ matplotlib==3.1.1
137
+ matrix-client==0.3.2
138
+ mccabe==0.6.1
139
+ menuinst==1.4.16
140
+ mistune==0.8.4
141
+ mkl-fft==1.0.14
142
+ mkl-random==1.1.0
143
+ mkl-service==2.3.0
144
+ mlxtend==0.17.2
145
+ mock==3.0.5
146
+ more-itertools==7.2.0
147
+ mpmath==1.1.0
148
+ msgpack==0.6.1
149
+ multipledispatch==0.6.0
150
+ murmurhash==1.0.2
151
+ navigator-updater==0.2.1
152
+ nbconvert==5.6.0
153
+ nbformat==4.4.0
154
+ networkx==2.3
155
+ nltk==3.4.5
156
+ nose==1.3.7
157
+ notebook==6.0.1
158
+ numba==0.45.1
159
+ numexpr==2.7.0
160
+ numpy==1.18.2
161
+ numpydoc==0.9.1
162
+ oauthlib==3.1.0
163
+ olefile==0.46
164
+ opencv-python==4.2.0.34
165
+ openpyxl==3.0.0
166
+ opt-einsum==3.2.0
167
+ packaging==19.2
168
+ pandas==0.25.1
169
+ pandocfilters==1.4.2
170
+ parso==0.5.1
171
+ partd==1.0.0
172
+ path.py==12.0.1
173
+ pathlib2==2.3.5
174
+ patsy==0.5.1
175
+ pep8==1.7.1
176
+ pickleshare==0.7.5
177
+ Pillow==8.1.2
178
+ pkginfo==1.5.0.1
179
+ plac==1.1.3
180
+ plotly==4.4.1
181
+ pluggy==0.13.0
182
+ ply==3.11
183
+ preshed==3.0.2
184
+ prometheus-client==0.7.1
185
+ prompt-toolkit==2.0.10
186
+ protobuf==3.15.8
187
+ psutil==5.6.3
188
+ py==1.8.0
189
+ pyarrow==3.0.0
190
+ pyasn1==0.4.8
191
+ pyasn1-modules==0.2.8
192
+ pycodestyle==2.5.0
193
+ pycosat==0.6.3
194
+ pycparser==2.19
195
+ pycrypto==2.6.1
196
+ pycurl==7.43.0.3
197
+ pydeck==0.6.2
198
+ pyflakes==2.1.1
199
+ Pygments==2.4.2
200
+ pyLDAvis==2.1.2
201
+ pylint==2.4.2
202
+ pyod==0.7.9
203
+ pyodbc==4.0.27
204
+ pyOpenSSL==19.0.0
205
+ pyparsing==2.4.2
206
+ pyperclip==1.8.2
207
+ pyreadline==2.1
208
+ PyRect==0.1.4
209
+ pyrsistent==0.15.4
210
+ PySocks==1.7.1
211
+ pyswarms==1.3.0
212
+ pytest==5.2.1
213
+ pytest-arraydiff==0.3
214
+ pytest-astropy==0.5.0
215
+ pytest-doctestplus==0.4.0
216
+ pytest-openfiles==0.4.0
217
+ pytest-remotedata==0.3.2
218
+ python-dateutil==2.8.0
219
+ pytz==2019.3
220
+ PyWavelets==1.0.3
221
+ pywin32==223
222
+ pywinpty==0.5.5
223
+ PyYAML==5.1.2
224
+ pyzmq==18.1.0
225
+ QtAwesome==0.6.0
226
+ qtconsole==4.5.5
227
+ QtPy==1.9.0
228
+ randomsearch==0.0.1
229
+ requests==2.22.0
230
+ requests-oauthlib==1.3.0
231
+ retrying==1.3.3
232
+ rope==0.14.0
233
+ rsa==3.4.2
234
+ ruamel-yaml==0.15.46
235
+ s3transfer==0.3.3
236
+ scikit-image==0.15.0
237
+ scikit-learn==0.22
238
+ scipy==1.4.1
239
+ seaborn==0.9.0
240
+ Send2Trash==1.5.0
241
+ shap==0.32.1
242
+ Shapely==1.7.1
243
+ simplegeneric==0.8.1
244
+ singledispatch==3.4.0.3
245
+ six==1.14.0
246
+ smart-open==2.0.0
247
+ smmap==4.0.0
248
+ snowballstemmer==2.0.0
249
+ sortedcollections==1.1.2
250
+ sortedcontainers==2.1.0
251
+ soupsieve==1.9.3
252
+ Sphinx==2.2.0
253
+ sphinxcontrib-applehelp==1.0.1
254
+ sphinxcontrib-devhelp==1.0.1
255
+ sphinxcontrib-htmlhelp==1.0.2
256
+ sphinxcontrib-jsmath==1.0.1
257
+ sphinxcontrib-qthelp==1.0.2
258
+ sphinxcontrib-serializinghtml==1.1.3
259
+ sphinxcontrib-websupport==1.1.2
260
+ spyder==3.3.6
261
+ spyder-kernels==0.5.2
262
+ SQLAlchemy==1.3.9
263
+ srsly==1.0.2
264
+ statsmodels==0.10.1
265
+ streamlit==0.80.0
266
+ suod==0.0.4
267
+ sympy==1.4
268
+ tables==3.5.2
269
+ tblib==1.4.0
270
+ tensorboard==2.0.2
271
+ tensorflow==2.0.0
272
+ tensorflow-estimator==2.0.1
273
+ termcolor==1.1.0
274
+ terminado==0.8.2
275
+ testpath==0.4.2
276
+ textblob==0.15.3
277
+ Theano==1.0.4+34.g473d74ea4
278
+ thinc==7.4.0
279
+ toml==0.10.2
280
+ toolz==0.10.0
281
+ tornado==6.0.3
282
+ tqdm==4.46.0
283
+ traitlets==4.3.3
284
+ tzlocal==2.1
285
+ unicodecsv==0.14.1
286
+ urllib3==1.24.2
287
+ validators==0.18.2
288
+ wasabi==0.6.0
289
+ watchdog==2.0.3
290
+ wcwidth==0.1.7
291
+ webencodings==0.5.1
292
+ Werkzeug==0.16.0
293
+ widgetsnbextension==3.5.1
294
+ win-inet-pton==1.1.0
295
+ win-unicode-console==0.5
296
+ wincertstore==0.2
297
+ windrose==1.6.8
298
+ wordcloud==1.7.0
299
+ wrapt==1.12.1
300
+ xgboost==0.90
301
+ xlrd==1.2.0
302
+ XlsxWriter==1.2.1
303
+ xlwings==0.15.10
304
+ xlwt==1.3.0
305
+ yellowbrick==1.0.1
306
+ zict==1.0.0
307
+ zipp==0.6.0
308
+ zope.interface==5.1.0
309
+ zulip==0.7.1