Spaces:
Configuration error
Configuration error
Commit
·
e50e42a
1
Parent(s):
f86d315
First
Browse files- 013.png +0 -0
- Boundary_Detection.ipynb +0 -0
- CNN_Model.ipynb +1 -0
- Defect_013.png +0 -0
- Hole.png +0 -0
- LICENSE +201 -0
- README.md +82 -9
- Thread.png +0 -0
- app.py +107 -0
- download (1).jpeg +0 -0
- requirements.txt +309 -0
013.png
ADDED
![]() |
Boundary_Detection.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CNN_Model.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.10","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"# **Textile Defect Classification Using CNN**","metadata":{}},{"cell_type":"markdown","source":"### **Importing Libraries**","metadata":{}},{"cell_type":"code","source":"#importing relevant libraries\n\nimport numpy as np \nimport pandas as pd \nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n \nimport h5py\nimport cv2\nfrom PIL import Image\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nimport pickle\nimport matplotlib.image as mpimg\n\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import confusion_matrix\n\n\nimport tensorflow as tf\nimport keras\nfrom keras import layers\nfrom keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import Sequential\nfrom keras.layers.core import Flatten, Dense, Dropout\nfrom keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D\n\n","metadata":{"_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"/kaggle/input/textiledefectdetection/train64.h5\n/kaggle/input/textiledefectdetection/matchingtDATASET_test_32.h5\n/kaggle/input/textiledefectdetection/test32.csv\n/kaggle/input/textiledefectdetection/train32.csv\n/kaggle/input/textiledefectdetection/test32.h5\n/kaggle/input/textiledefectdetection/train32.h5\n/kaggle/input/textiledefectdetection/test64.csv\n/kaggle/input/textiledefectdetection/matchingtDATASET_train_32.h5\n/kaggle/input/textiledefectdetection/matchingtDATASET_test_64.h5\n/kaggle/input/textiledefectdetection/matchingtDATASET_train_64.h5\n/kaggle/input/textiledefectdetection/test64.h5\n/kaggle/input/textiledefectdetection/train64.csv\n/kaggle/input/fabric-defects/download (3).jpeg\n/kaggle/input/fabric-defects/download (4).jpeg\n/kaggle/input/fabric-defects/download (6).jpeg\n/kaggle/input/fabric-defects/download.jpeg\n/kaggle/input/fabric-defects/download (1).jpeg\n/kaggle/input/fabric-defects/images (1).jpeg\n/kaggle/input/fabric-defects/download (5).jpeg\n/kaggle/input/fabric-defects/Hole.png\n/kaggle/input/fabric-defects/Broken-pick.png\n/kaggle/input/fabric-defects/download (2).jpeg\n","output_type":"stream"}]},{"cell_type":"code","source":"#loading fabric images\n\nfilename = \"../input/textiledefectdetection/train64.h5\"\n\nwith h5py.File(filename, \"r\") as f:\n print(\"Keys: %s\" % f.keys())\n a_group_key = list(f.keys())[0]\n X_train = np.array(f[a_group_key])\n \n \nfilename = \"../input/textiledefectdetection/test64.h5\"\n\nwith h5py.File(filename, \"r\") as f:\n print(\"Keys: %s\" % f.keys())\n a_group_key = list(f.keys())[0]\n X_test = np.array(f[a_group_key])","metadata":{"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"Keys: <KeysViewHDF5 ['images']>\nKeys: <KeysViewHDF5 ['images']>\n","output_type":"stream"}]},{"cell_type":"code","source":"X = np.concatenate((X_train, X_test))\nX.shape","metadata":{"trusted":true},"execution_count":3,"outputs":[{"execution_count":3,"output_type":"execute_result","data":{"text/plain":"(96000, 64, 64, 1)"},"metadata":{}}]},{"cell_type":"code","source":"#creating dataframe\n\ndf_train = pd.read_csv(\"../input/textiledefectdetection/train64.csv\")\ndf_test = pd.read_csv(\"../input/textiledefectdetection/test64.csv\")\ndf = pd.concat([df_train,df_test])\ndf.shape","metadata":{"trusted":true},"execution_count":4,"outputs":[{"execution_count":4,"output_type":"execute_result","data":{"text/plain":"(96000, 5)"},"metadata":{}}]},{"cell_type":"markdown","source":"### **Exploratory Data Analysis**","metadata":{}},{"cell_type":"code","source":"plt.imshow(X[40000])\n","metadata":{"trusted":true},"execution_count":5,"outputs":[{"execution_count":5,"output_type":"execute_result","data":{"text/plain":"<matplotlib.image.AxesImage at 0x7fe477852390>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD7CAYAAACscuKmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABEjUlEQVR4nO29aaxkyXUe+J17b95c3/6qXldX9Uq2uJgym3KDpkYcgyYtg5YF848gWDYGnAGBBgaagQzbMMkZYGAPZgbSH8v6MRDQGGnMHxpTsi2ZBCHLpmkStiGaYlEkxaXJ3ptV1VX19iX3LeZHZuX5zqmXWY+sqqwWMz6gUJEvIuPGjRuR95w453xHQgiIiIj48UfyoAcQERExH8TNHhGxIIibPSJiQRA3e0TEgiBu9oiIBUHc7BERC4K72uwi8mER+b6IvCQin7hXg4qIiLj3kB/Vzi4iKYAXAPwsgKsAvgrgl0II3713w4uIiLhXyO7iu+8F8FII4RUAEJFPA/gIgKmbPV2uhsK5VQBAGIitHNLnxP0AcdM+t/NX0O9J3/af9KcMauguRZful21dodyblJcKnUm5nHSndA4c9ivmc6OT67XcFFRz7TOlgfSDvdFh0C8OZtRlid5cJvZGZ/3Et/u6LAa9dFJOsuFpzUfXHdqbEXqGXJO4Z5snA20nto7vpUNjGvbdg6drJz1bxbcdzijHBvdcQoHGldox8v2YOXBj5HHIALZuMKWdm+6kq3+Qjr3RMBh10g4NdEPb3cEId7PZLwK4Qp+vAvjLs75QOLeKS//X/wgA6J3kpk46Ojmh7GaD5i3dK0zKw7JbwPQgitv21kp7p48pa9iHl9K+3Xu3rXv4J29Oyu8///Kk/BcrV0y7hJ7S7+/8JVN3+fVH9dqZvc/3PvL6pLxaaE3Ku52aaVfvFyflRs/OY6OrnzcrDe0vb5l2vJGGsGvjxf3NSXl/e3lSrq03TTvenI2Tkqkr0g8j32clt4v00tLhpMwbHwDaA32GL9OYjnerdhwNbVe+aTdZoa5l/vH2G5831qBo69oX9E2R1Oz4y1VdMJ22rs3Bnu0kq+sF80M73/mRzmOBprjQsOu7cr2t/b183dQN9w8BAP+190eYhvt+QCciz4rIZRG5PDhu3PkLERER9wV382a/BuAR+nxp/DeDEMJzAJ4DgOITl0K/OxYLnRjPb+WkZH/h01R/4fpFFSt9H1lTf7vStqmyv+T0whavMQz1D/mB/S08bNm31y2sp3XzuZqoOP6eZfvWf2NjZVLeq1sRf7etb/DuUB/NzeaSaTcY6rgKqZsrEt35rV9K7RupPdC3UO50nK2a3s9JQ++5309Nu3JR32rDnq1rk+SwsqKvq97Azim/sS8sH5s6VkPecU6lqsNlq1+9sr2h/TfsWz8/1nHMEun5821rgtbZsGm3TJdUm4TXae6kTtELeDGepcm0qxdPO05l6NBz6k/TS6fjbt7sXwXwlIg8ISI5gL8N4LN30V9ERMR9xI/8Zg8h9EXkfwLw7wCkAH47hPCdezayiIiIe4q7EeMRQvhDAH94j8YSERFxH3FXm/2HxhAIrdElpeesA6wzOfMMfw456fYtZ14j3ccd7CKQSsk6kzfV5HXVtWrXbP9751TffmHj/KT8dPV10y4l5bDmDg9WS3oqftK2J7ZDb/MZ42jKWQEAnK/Z84JCPji13UrBjqOS6WQ1+/ZEf72oOvbqEo23acfBZwfelhdIty1s6JgGzkR3+Iae9mep1XNXy3rtjaIe7r5j44Zp16SziStrdozdk9OXeEhnfzYYsN5vNd/eET3DfLpp0ijM7jHzWULSD6eWAUAGfNh0+lqZheguGxGxIIibPSJiQTBfMR5QcW/Gz0xwop4xkxRVJPRCE5t/yLIEABC6U7Y0sakNAAr1AbWzdZ3XtNPvXnpoUr65vmraseltKbHOLKu5isivhTVTd9RREfSR6uGkPHCiY4ucNx525qplEtfZ8+5C6ci0Y5Xhj3eeNHVszqsUVM9pZXZS+2RGq6za+2zuqVlxqajz4VWVw7b2cdxwjjmZPqgXDs9NytXUeiw+tbIzKW9vWAekdkdNcUmXxPHTtZ1T66yq59YmrdXgVdMpuM2hh9VKWnPSn64WSME+C8kL4+9MH0N8s0dELAjiZo+IWBDEzR4RsSB4YDp7yLxZgXQf70qb6G9SUqDIH2fqGJL+FzLbx5DccUOHoqSc12HaHpxaBoDl17X/Gw+pC+t/fuitpl1hnQInnO/lOuns3v10u75MDdW8dHHF6tsvd9TF9Mrhqql795Z6LJdFlc2esy2x7szBM4A1j+UUxFIq2Mlq9ygAxQW4dGuqU1YLqmOzCQ0Arm7puUXqTG8c6XZUV33+pXzTtPvJ1Tcm5Yvrdq5eOaJzgKHOgfjXHC0XcevPfzZ101xw3dmE8DmRPxNgc1tvRjwih6Mn9gakNDYBnh7wNvrK9J4jIiJ+nBA3e0TEgmC+YnwQSG/0+xK8txGLQx0ncjIRAv08ZU6s7IoLROY+yFKRkpUor1uZqvDGgX5od0xdtqtmneZ5NQV947FLpt0miapvLW+bugq5+RXd+DstHeT1lor0XhVg1OvWXLW9rOoFm++uNK2Zj/us5taUdUIEG11SNXIXf18tTiftqFXVBHiuqF5+3gS4uqxqzeGxjQIcUv85eQZeP1427Tg6jlUGAKhuaP+NoP0zfwIA4wGYONMvBwze5mnH3yPTW9KbLsZ77860d7oYnwycqtvVToKPektuDSyK8RERC4+42SMiFgRzD4RJx8Er/YKvI++mrv0NCjkF/pN3V/AnniQeDQs+MkOL7BElzksOXa0MDUfDRCeglW0VHY9ft+Lnfyk/MSkvPWYDUEp08c2aPZlud3VSDtpK0FDKrMjGNE8Dd6J/SN+7UFHvOqZ4AoCjrrbz3G8pqU0d8krsOsmR1RA/xvUyEVbQMfV+z5JLLJd0fnZ3LEnHUdC2eVHnre0CiF7u6en8o+sHpu7S6uGkfJ3E/ZMjS4AR2sS117TrL20S51/Jida8rsjKk1oN0BJi+KXJy5g9Or321uuf3g7qQTcrQCa+2SMiFgRxs0dELAjiZo+IWBDMVWeXoOR6g57zAGJzhNPFh2QmMQa7gietPL3swTp72nUmwAFF1XWs4pXkqlOX9tXEU9q1+l+d9EFv8npbTYkTH6/tm7pWj6iIpxBZAEC1pNfuOaLHk5bqs9zHo1Wry75AYYEcbQdY0kqjaroxNclEx9FxgCXAuNZYnZR91NtKTmcazuQ1ONExtugcx6ulHeJo33GEk+86p5TLf2FFy39afcS0u7K9rh/27Law+rc7J2KdnVRqF5jneOOnm1KHBfIW7TsbHa0/qdlzolAaP4vd6e/v+GaPiFgQxM0eEbEgmLMHnQbXi88xN+NnR0jk52CDgQ9YoLI3vXEwA4tbSceKSmFA8pYzb4Dq0jp5wh1ZMbje0mnd71hxq1lR0feJ8q6pa5FofbW+Oin71E1rxGN3VLcqRHNfr3d9VTnzOAAHAC6U1SznOeVPeno/J8R/V3TBLgzv5fdoWVWUQzLzveG835Yo5VVes7Jvb4fujYJugn+2FX2gh4dWjH+Fgmbe/rCqUI/UrFpz80jNft3cmvY4qCr1UzCFX+I2LYw/Oz2kV6H1nRJHfdGrqTpGGViSjkFppM4Nr07XX+ObPSJiQRA3e0TEgiBu9oiIBcF8TW8DIB+ril4f6S2RuccTW7BJhnUknyaY3WVzr7NrOSSkv3edeYOjiYLL10V1SZN1dudueqJ6E7uvAtYUV3E6apEOE5j0kU1hANAh19dCwY6/S9FWu3XVX78nW6ZdKdVr+Syu5UwV0wGRSvojjC3HWc9gsoxzJW2327Q69dUjPVdYW7LnCjcP9LwgO9L+/HnMMKN3llsTb9xcnZT/uKTEmlulE9OuVtazg50l+8w6fXaDdWtuCnmFT7ds8gu6uu4K9U+kmFnTXitd1znwZwKD8ugPg6/dhbusiPy2iGyLyLfpb+si8nkReXH8/9qsPiIiIh48ziLG/3MAH3Z/+wSAL4QQngLwhfHniIiINzHuKMaHEP6TiDzu/vwRAB8Ylz8F4EsAPn6nvpIhkB+P5JmBE+P58yD3YUFUJi45ceI+WiTm+LopHmniQrlYVA9ebu2q2J001fOrtGvtMeUdNd1s71hTE5NBFFN77aOuiq3saXaxYgkfjsg05jnluyTqcTSbJ3xoNHWMnvOvUlORtkCRbd6Djq9dLVhvw8bgdE++3KWY3j9SsX5j1aoF5U0V61tDNSkmjnhC+Ln7VMldrXvxphKO9M/ZPticebJuTalt0Hz7iExaj7w2fTpxw+fu5tF4dFJKM79HWPwfup17S2sazvIcnV41E1shhFu+hzcAbM1qHBER8eBx16fxIYSA2yNvJxCRZ0Xksohc7rca05pFRETcZ/yop/E3ReRCCOG6iFwAsD2tYQjhOQDPAUB185FwSxTxJ5IpUeAO8xlpdDjdjqfhYgnRp9ih62VtUgV6zoNuSFTVyYxxUJBC4cgSVBT31EuuUbcsHe2qfn75yFIi90gsZpE5cZP1RHVvUn64bEX89ZKelbbJI2+nYT2uTtgr0Z1gd7u6LLZW7ak1gwNoCk48PyZVg4kzvKddIdeH6FWS88t0ik+EGg3nsYg2R0A50Zf673V0HNt1Ox9v39AlnG7a+X4lbJzaBwAkTFFO8zjsWnk6sBjv05vxc6fu+1U7V3xrQ0f+MlEFZry+f9Q3+2cBfHRc/iiAz/yI/URERMwJZzG9/QsAXwbwNhG5KiIfA/CrAH5WRF4E8NfGnyMiIt7EOMtp/C9NqfrQPR5LRETEfcTc0z9NdHbPnU0mh5B68waVTdrd6UQCw66tY2+krDWdPEAK06dE8vzUvycta3rLOqTHOVPQckX1+0bXKl69gd5oSjfzen3dtAORXixn9rzgLTWNpOuQfSbzXnhkAhw6XTkn8kj23mPPOgCod9W81ujZucl9Xq0xvG7/8KpG36XubIK9DzlIslByfZfJ488RcGbOw1D7c+uDDnx+au2KqWsRO+r1A2vC5H56lK4KzkRn1qpLq8yppNmZcVCcvk5vS/vcnXG+dOs6d2wRERHxY4G42SMiFgTzDYQZqtnLBxSwKcEHABjOdxKBvPluQJKkOI477pM5wIYlK36mKyqmiSc748yZZKKD4wpjNSE5mc4RlyTOtEIiYUai9J4LHuF2Ty3vmLpqpp5sLOIvFxx/PXnGdXp2GfDneqLj9WL8+Yqa5Zp9O48VatsnmfOkbokhHq6p6dDz5F3uPqrjJeKMTseqPys19X7zKaoGU8yZmTcVEsHG1vLrpm6jpP4h14Yrps6YzZo6b6l77j7lE4O93gYlXVeJ2yOFul4rtY8ThfGjSKZn5Ipv9oiIRUHc7BERC4K42SMiFgRz1tkDCuMUyemyI6+oTSGogOXtLjQ4va1tx5FAt0UMsVmOCAS7G9b1MmcihL4diBCnvHRONy0BQH6i7Uo7Vpdtrun1KstW8WKiiDJF/vmUysdk8jruWx2YdXZOD112TIlt0ssrjkjyqKH6Kwf+HTgiDibf8Hzw7CJbybRd3eVp203VbfUnV94wdWwu3KxQBFzndBMoACznNvqOzWZdMm1619wrx6qLfzl70tSx23Fw3+uTns5poP3aZFOz+JTQVJfu6hizlmlmzoK8+fjWWdgUi+eobnpVRETEjxPiZo+IWBDMP2VzZySaeTHH8MG7tLjMsy0kLhbqth2LMD4qiLgUDOeXBNvwFv82AKRtay9JyGQnntiC+6AU097kImRu85a9IYnxRTK9PbVizWsvHWu0HIuYALBENplLuUbHeZ65Lw8fn5Q3Kzb0eJWIHNjsd1i3HPhFkj9Xi1bmZI67w65+z6er4pRXBz3b/6NL6inI97lbtO36JJ73vWsZgYlDvCrQpWi2bzrPxiXip+MoPQDoU1SjzIq6pK9llmoPhTrX6fpIu259U/9Jz/EejtvOWpfxzR4RsSCImz0iYkEwVzE+pEBvaSRKdf1p/JKKH4OKFUX6NaprmDw6ph2LSj3LTYAhBRUMShR0I9OzySZlJ2eT3M1eT3y6D1hPvu6yvZdiRfWXlYoVfY+gp901OlW+VLKeZXzyzafvAFCgG8ip/GhuU02dW1LZseb446qUgvQaUT13mla83Rad5NVz9l4er6gK8b0TZS0TR17RJ9Wl44jV3l7VdE03uurZeK1gvdiOSBVodJ1HJJ3o87XTdEreJgDNI2t1YNVjqWotKF0iIwkNjtiyfYqho7Z1aYfVQ/6SbcfTExyxyi3txf+dEd/sERELgrjZIyIWBHGzR0QsCOZMXiEIY733tvQ4HFBWcfYq0n/6IF501wd7JvVvM99Rd2T+6jsigc4Mfm/TB9vN3E8mm/04imlUSaZDRyjBejR7nTWHVg+9VFYdvpL4FFJ6JnA8VN2zJLbdT6xM5QhF4baHM0Jo2eXSons5WbWecUxEwfdSdKYrJux47WQD08BjWilavblFprKmM5sxMUe7rXWe+JIjEIduTfR3dR4bLlIxL1I0nugczEoT5R6n8fZkHvqBW3/mbMituXTsQXc/eOMjIiL+nCFu9oiIBcF8xXhRE4H3DmLe+J4LFOC0OoECRHpL/gLh1CLgAmFIHu85bm4WlW7jySNJ2GTv9CYSliRdXZ/MOD545Hy5fmrddsfe6PmikkaspNbktZSoiNscqljZgRVvnyyrKW6/b8kxWuSttlzW/uqpbcd87QdNa65qkv3xUulwUr65ZDncXt9bO7UMANdP9L6fXFNvugvlY9OO58oTfTQpOGVwrGMKbfueG9ZIvUidqL6n99nJ7H2uPazkG73zOlf9jm3H5ra+Mwt3VrXMXqDMywjYNewx0d5mUNHFN3tExIIgbvaIiAVB3OwREQuCuerswxRor49+X3oV5+7HVoWW06fIfBUyLrsLsK7lf8aIx5v790QCzCPpPSp9mlztxLVj9djpWZwDbL9ho7eY0JHdPPsda09ZIiLJYtGGDz5UOJyUd/qqH58MrA75ttL1SfnL9beauheOz0/KbBor1Kz5rr+nRBz1piOl6Kpi+s6aklKco3MJAHilrxF8TAQBAJ2g/b9OCuvGlo3SW851PnrO9jSg50sBZcgPHAkFmeWGF61pj9N/S8+tW1q4q8sazra35cbR0HvjNQzArFWhtVlw+ROyOuc+sF3cInXx50xTLnM6ROQREfmiiHxXRL4jIr8y/vu6iHxeRF4c/792p74iIiIeHM4ixvcB/IMQwjsBvA/AL4vIOwF8AsAXQghPAfjC+HNERMSbFGfJ9XYdwPVx+UREngdwEcBHAHxg3OxTAL4E4OMz+8qA9vpIFLmdXILMawUn+xYocimfHq1kRGZn1gpTPtzmhcfWO/9TGE5vd3uEk5a9J9WATD5Nx6G+TXxslaKKzN6aslFUMbaa2BCqh1I1SzXI9MZlAHh3fmNSfi23qaP/8Oidk3KLxPOVZSs+75MpaziwYusLh+e0DzLlZVO88wAA/ekpk46PVQ15pWI97XxqK0aN5rF9jnjscss9mJzoVhg6go3uOpPEuag98tArEGd9dcXK2Z2izgFzDQJA4NRQpG56kZxF9/zImQdPRnNwz8grRORxAO8B8BUAW+MfAgC4AWBr2vciIiIePM682UWkBuBfA/h7IQTj1RBCCLjt/Tb53rMicllELvebjdOaREREzAFn2uwiUsBoo/9OCOH3x3++KSIXxvUXAJwaWRFCeC6E8EwI4ZmsUj2tSURExBxwR51dRgnPfgvA8yGEf0pVnwXwUQC/Ov7/M3fqK6RAd20kAPh0tMMy6eVlGxmVks7uo5VMH6Q/DTrT9T/OF+c56s14/eywZa97enl0MfqKYw5JKjquYdGOkfXSfk3r1hyjTUID8br43kB/UNn09oOO1XPfKKnZ7+nSD0xdlrxvUh4cqa7ZLtmDlnRJzX7+uWzv67X3jnVMP7FlyTPZXLXvzaBkpuQ0e4fONZfzwPlxLBHjz4VVVYJ3XE64OrnBijvvkZr274iNMKQx94jQ0jPyJGTH7XftmUAgt+OM8rkVD+w4yjvaR2nfjj8/Ho0x6U/fH2exs/8MgP8OwLdE5Bvjv/0vGG3y3xORjwF4HcAvnqGviIiIB4SznMb/F0x3r//QvR1ORETE/cJ8CSezgN7GSESXoktzTF5FiXNdCyQq+Ugx044lGEdAkFBUHae7TbpOZJvhgWR+8lik96l+zEBs/9316WPEkYrknLV6s2YPNjMiED9wEWuviZq8tnsqSr/eXDftfn/4zKT83yy9ZOoeWT3UIV1RcsfmvuONX9GJHPSdx9hBker0Zl4t2Am+uHKEaTg81uuxuNx2BBVmTAWrArKHW5G47Euu3aCm4n6/P50BwovnnD66152+nVh09yQg2bHW5Yc63tKeU0muEn/9riOfH6856U/XS6NvfETEgiBu9oiIBcF8ySuSgLQ6lnlneLj1OnZYgT2r6FRd3Il7yieZDSfG8+k5SXDisl6ySH4rM+ak7TQJyQe7cDbZkmvKQ3ZzkNGYe0fqnXa4ZE+fD8oq3nq+uAFdoE1uil3n4fZiXYNdzucnpu7RinLcfat6cVJODqz4HIj7v1S2JonmTb3xwrGOqV61qkC2ptd6ZNny43OmWfY27Lr1waK1F7OPiReuUtCHW8rsg0/KxP3mMrU22vosuh3HcXeodQPy7syqVrcLPSZZNFVmDRZIY/Mn69Iji1XLek6Gwp23cnyzR0QsCOJmj4hYEMTNHhGxIJhzymbB4GSs8wycyYtMK+LMYSkRBrBOXajbdpz69jbPOCbHIF3Im82YCNPr7Jwml4kphwVnXqPPfaezJyYKzuf1pXGcaN1J3ersN0pqUstdTugysWIW6XBio2hNNTfbSuZ4jRkPATxZVi+39U3V5w8PrfmOyTMf3bT69ksljeDLbpBn457Vefcuqg7/1Kr1rmOyS9bZhw27bNt0ptPNbR3ndOtQ6mVvojtpaf+ZM/1yNFvbRSryORHzgwRHzsLRmsGt/SGRqPI5TvHAPls2q4WiOz9Jx8/C5wEnxDd7RMSCIG72iIgFwVzFeOkKStdG4scsTvbbPNJIqjIplXvTTWO3EU8QjOnNZ5qS6SL4sKqdBs7O667VXdE+vOktIy7wwYwgnIw8/tp1+5gOKiovVgrW5FUgsX4zV73mYeJuB4CEJuvE3WiNXAyf2boyKf+HI+utxymTnl67aupuPKRqwuDa6qScH1kxc3tXVZILVcsHv1VRFWK/pNfuHNv8SSwWD4/tXDElXYM4OrwYz95vLReosrqm9rCkYB8apwI3AVDu2ZYqRKIR3Phbej1eL56IQmjBDKtWnQjZaBHGlM0RERFxs0dELAriZo+IWBDMVWdP+kDl5kgPmWXy8m6pg8LpOjCnuvXf87nkGP0y6XhuBjidrkmRC6ubs96fOJfbvrWUGZS3iVgzdemiiYybPWmlbXXIxolOQtMRW+x1SLcd6M29a+kN0+6hourHrzYtscW1rg6E3XEvnjs07dp97f8tJUtU9MS6UhI+v6SRc6UdZ1a9pvfy2oo17b3n/LVJeWtF9fcf3HQutyczotSo3KsS6WPNuVpT1GXfueOy+2ylajnlT4ggkgkzE29VJTder/ezm+2glJxaBoCkrQstFFyUYXl8bzHXW0RERNzsERELgvma3oaautZH9LBYH5xUxmJxb3m6CM7idN95MA1YPGeO+hliT+ZS5nJEUtqhPpy5g1NJF2xAGcq7JLLl9nvtDf3t7S0TmYdTE8Ku3sx+zYq0NeJc22urSM+RcgBwsageb0e51TtYrO+T7YrTUwFAkSLHXmxZJnHmyeuva7tB3Xp+MVnDwRsrpu76kk7eekkn//WStZcmhzPeWWwOa+q99BxBxVJFxfOhTxlO8KQX7ZJ+NuK/i75jQgzPkzcokgpR0brOih1jldS+5Nh6RCb5uO2stM7TqyIiIn6cEDd7RMSCYL4cdKLiNJ+IA/Zk2nuuMc2aoaCekZ7Ji+cmEyeJaS57EjIif8sdPVrxiMgD6FqtTX8xLZb2p3v5uRgWQ2IwWNJKadsbZTKIxo4Vz4/pdL5K3nU3O0um3flcT+Mrjgv7lS5lVqWT6KIjfGj0VJ240rJ5PftkumAih+6yXXLFfZrvPSu2vrKj6sTbt/S0f/WczQR7XF+dlNOmW1csWdNzrzfsIqtUdCGkLhCGT+O9+C/kRWg8+VwqKxbdPcdiRtTp/WXtv/mQvdbymqpb+c6hqUvH8yj96SSK8c0eEbEgiJs9ImJBEDd7RMSCYM688UB7rN8Oir6OiCG8Q9QUS4gJ+odN9cz9AYAQAQbrdUnPeXSR+mr534F+iT356IzBecyxru89+SzhpP1egawpLT5/KFsdLxBhQuqivHaOlDSisK4DqffshN/oqJmr6G17hP2Wngmslqy3HpviDjr27ID5/Qu59t9asjpl36Q+ss+iRecR+ytafmJtz7T7FunfgxtWF7fRiUQq6SLbWqLnD8Ed+ORFvc+BJwklYgvDueKfLc2BJ8cIVFcnYsrOmn0Xn1zSZ7hxxR1sHYyf9eAudHYRKYnIn4jIN0XkOyLyT8Z/f0JEviIiL4nI74pIfqe+IiIiHhzOIsZ3AHwwhPBuAE8D+LCIvA/ArwH49RDCWwEcAPjYfRtlRETEXeMsud4CgFu2jsL4XwDwQQB/Z/z3TwH4xwB+c1ZfwwzorJ/O2MBZVj2hxHS+dmdmoe/5IBNLejF9jOxp5/tgXjsWDwsu7Xx+pDJc6jK8WtOblfX4e9mBPhr2QBt1wtd2XngNugGKK+k6d8Nr7dVJ+XzRuvnVMjVDbUPVgp7Tr2oFbbfbtMQWjQ7xqQ+mv1M4sClzGY2yI/3e9T1VO8pb9gHWKDjl0Jn2QIEqQiJycNfiGQ7Ogy6jlFVeBDepooTNcM70RipEmtg+clIF+lXtr5tZ1evkUQrIuWmDl8rfGc/B3XLQiUg6zuC6DeDzAF4GcBhCuDVHVwFcnPL1iIiINwHOtNlDCIMQwtMALgF4L4C3n/UCIvKsiFwWkcuDRuPOX4iIiLgv+KFMbyGEQwBfBPDTAFZF5JbMdAnAtSnfeS6E8EwI4Zm0Wj2tSURExBxwR51dRM4B6IUQDkWkDOBnMTqc+yKAXwDwaQAfBfCZO15NgFvpx2ZYe277CTIJkA1Bheu+SeQBrv+U3GJnElPSxXz/WZN0arKNZR2re6cdvoAbI6trzrRXIQLNQa6624nYx2Ty0TndMyVdv7E13Zx02J7OsFGlG3+oSrzxHfsddgH1emirqfomm67giRvIi9e7onI67e6e9nclXzXt1ms6Cb11ax5s3NAXDOcZCIm9Vp+53DNvctW2tbLLscZl0vWZUx8A2i19FknF9pHSA2VTXseNg3npTx61xq+sMYo6DEfT01mfxc5+AcCnRCTFaBv+XgjhcyLyXQCfFpH/A8DXAfzWGfqKiIh4QDjLafyfAXjPKX9/BSP9PSIi4s8B5pv+CbfF9E/A4vSwMKURbGRY2raiaTLDvMafp5ryAGNe895vLLoXD8kc03Zpeji1rjOvMfe3nwvp6s3lx2qT6tWs+MzkGD7NVYHMVfvE836cOcIHMgV5z7icdKA1ShvVdzpPNVNx36c5TlK93kpV+/fEEN2miqM9y12BwiF511E6rJYj2wgkxm/W7CFwo6Ced8ZDz1tVM+J+q9q5GpKIn6W2brlEZj+qqzeth9uQTHHDGYwpBepj6Dwnh8Qv3zrnPD/HKtbge9OP4aJvfETEgiBu9oiIBcF8xfigYrjnmUMyQ3SfksVVfCbYGfxbJiCCpTknBqeD00/cASA/0cb5sQ4kbdhje+nQIH2Op5Q8upqWlni4f6j9r2hapOJTj5p2Pa3CMJ8uEg46xHvmTsuZoKE3sA8jpYlkOurcmTgafRXBW117CpymdFJP/VVKdq447VLI7LuHuQIz8hQs7Ntle3NJJ+QtW7umrlDjyCYdY2Y1F6MauWVlvOGaHXsKXinos2ZPuOS29UwZWJ0Yz/Of0vekbOd7SPTRPq3YraCZMGNHxzd7RMSCIG72iIgFQdzsERELgvnzxo+52IfO0Ye1GPHeb2Rim+X9ZlI7e/Maq1D0PXEmukJdG1Zv2Mp8V008yT5FivV8LisOiZs+xeHYEieGliqSIdcJYqJLAGiSdxbzjAOOS590w3LJ3QtHWrmJPCGii/ZgukdWQpPnTVIt8hjjCLhq0ersg5qeWxz3HAFGkcxhfSIfcSbX/q6O92rR2u+Y3LGzQfO469I/dYiYpOPODkiPbjRtJBp7DnJEXO745bs9fTA+CpDPO5iXvlixz6y9yWdXLu3zjGi3yXfu2CIiIuLHAnGzR0QsCOabxbUHVK6PxQ0vdZhol+l9GBNJyZs3SNx3qkA2JV2TN68V6HPScZ5x5OGG/oxIHp/CkxAaJKq3rP0nDGmMbQ2WKO3ba6VkUusumyrDN1+oqMjsxWxGp2+XQTtTsbLV13LBEd0vlXSM6y6b7EldvdyYe/7RpQPTbj9X0b1ed/xxtA7YDOfF+Iw4+VonzibFvO4rxIWXW3Mje+iJ4yUUMpeyORMAuiWdu4wCiCpOXclmeNd12jrHnO3VB9OwpD4o+yCZUeVtgV2E+GaPiFgQxM0eEbEgiJs9ImJBMFedPWsNsfmtsW7nfmaYIGBQtpWdJTI1VZm73fZh0hx3nHmGUjhn5KXqyS05jXJvyZqdkq5eMO2p/ictlzCO9PnQtLpbaKj5bth1JruhDiZQH/me1Yezhpp/ho9Ys5xwOmNSetvOnZVNb6k7Y2A9vdnTcrtrTWM56aE+nXOa6bjqB/q9q5VVTIU/ghmcXhecK2pKJBe9vjvw4Wg8+lp2zs5pr6hzmjScrkx9hp6dK+YfGVBEXzW35yxFmquWc7nt0Bx3Olr23PagHAEhtXPQXR59jjp7RERE3OwREYuC+XrQtXsovDDipZSCFSsLK8pP3l91XGck5gzI1NFZtf2H8ypKStGKUe26ik7pId22T+dD0l1WdCJhwqY9ErmbzoTW7VLZirehT5/D9DC9QGpCumtzR1d21N525Hh+E+J46zUKp5YBQIirzXOhTyNX6DqOOBb3meQCsFxt7V19ngdN+2yZrOE2kytdbkhqQWg58ZYjIdu2LtB8CHnGDR3ZRmlNdbu2WP3QpMz25BskdnMkoSfz4HTXZWeW61LkX69DorpTGVIyCfpHdCudWhTjIyIi4maPiFgUzDeL62AwIWiQkg0oSMhLKcntsNIicZG12JPK/lb1yftoddmKlXVK4dMa6Olwr2mvVTyk8SbOk6pHojt5wg3rLvlFIJFzRlbNWal6THfHNj3T0isaQLP/DutC16b0QQmd3ibulLpTUbHSB2bUiiqC8ymyJ13gk/o1l5XXcLOtqNgqjmGkSIEfnGYJALo5qRcswjopnjP2pnW3JlboeiyNH9gB99fonlcsqUgno9Pzvu1/wFlXSaRvOI9FVlequQtwIartFll8PIsGi+g++/AMWjv9zp2bRERE/DggbvaIiAVB3OwREQuCORNOBtVhu86zjKK8kq41myXMtc4pj33q5RMyNa1axY65y5kMsAGbf65Q1ynx6ZBNNBub4RxBhdHTvc7O5rZZOjvp/cOW1SHTa0qquPpCzdTtlnUOeH7YywwAOtuqG/o0QzeozCQM7brVczl+7VzZnluwKa6xSumbnUmqQOQPVZ9aicxcvWNKZeXTIpHCetuMsuddkdZRy+n2LX2GS867LiOzX9PNAZvi+uTx1nXnTsVU53GrbM9gmADjSpvmquk8+Zi4xd/oLLbVMc78Zh+nbf66iHxu/PkJEfmKiLwkIr8rIvmd+oiIiHhw+GHE+F8B8Dx9/jUAvx5CeCtGP/Ifu5cDi4iIuLc4kxgvIpcA/E0A/yeAvy8iAuCDAP7OuMmnAPxjAL95x87G4il7iAEASFT1gSXSPz3jqM/UakgMOtZjjMkElsp6reGmlYdaDRWLs6b9LSyvqPBSWlEWjcSJ4+xRNxxa8WqmKY4gbPYLzsONTH0rL1nxuVerUXm6mpB0iZDBSabtXEV89rTz3P5ssksc6d/D5SOq0+9tN5cwDedrlpPvXFXv7RpxyzVgA3I4cCVx6orJLVClBZO750DieOru89ySjuum86Bj1WZIZrmeI57gOVjNrZowJOVjr6r3dnLi+P/42k5sn5CWpNPF+bO+2f8ZgH8EZbrfAHAYQrg1e1cBXDxjXxEREQ8Ad9zsIvLzALZDCF/7US4gIs+KyGURudxD585fiIiIuC84ixj/MwD+loj8HIASgGUAvwFgVUSy8dv9EoBrp305hPAcgOcAYFnW73xkGBERcV9wlvzsnwTwSQAQkQ8A+IchhL8rIv8SwC8A+DSAjwL4zJmuKKcLExwpJi6KLGmreSzpkz7prVrU9cBFaLGmxfm5nOUN2+eJuMERA+Zk/kk76qZacDq7EG984nnjZ+jsgfPCcTvff6Z9St2a5UpEFNGrTs8NxnOXOoFLyAWUI7lyxz3P6ZcbPav4D+lhrOVqhsucbs/66lurO6Zus6Amqn+Ld03KLxy5qLS63qfPF8DkkaxTF6rW9NunaLPjhu3/sZX9SbnRtUan1rGb2Fv99exzr3d1fgYV+zzLqc7rOUo5fZLbxZn02G3cEY6sjzXqGdbcu3Gq+ThGh3UvYaTD/9Zd9BUREXGf8UM51YQQvgTgS+PyKwDee++HFBERcT8wXw86ESPiTkPouBTIPeZVY/53+71hgaKfXIpiJg9YIdOHFyubS5SO6LwTxZrEoU7pjZKONQ2aO6w4kZNF9aHjj+uffp+ehz6U9NrDqrObEXrkXNfZtNdijr780DMhULsZ6ZaPjlRleOPYRt+tFHWOWYx/19Ibpl1zqPfy3urLpu6pgnoK/nHxLZgGfu7iovtMhByZG/uZfbYJeeV1j1xE3EPayaWlQ1PHIn+3SV5+Tp04bmufRz27Xs4XVV15tKZ+iVfKa6adUM60zAZ1ovzq6NrSmWFunVoTERHxY4W42SMiFgTz5aAT0aARJ8LOSpnEGBamU0kPy9pnyREh9AYqivFJ8VJuT7O7dILdXrUeTJ11na72mvZRPLAntNLzKWQJ6Yzj0sEUy6T7DvPwebrrYUanz1y1YY/cOXgE7nQ7Jc9Bzj66VLFzNawTWYMjwMA5La4WVKS/lO+ZZjf7Nusq4x2UGopP6r9Ve9i0a5OXXD93c0jecGxlgPNOG1R0vUjRrp2bTdWHHlu26ase39ST+ld3NiblXtturUZLxfi9tj1lf6SsfRZz9darVuwzq2c6H94Sdctw4f/OiG/2iIgFQdzsERELgrjZIyIWBPM1vSUCKY/1w6HXrYiAILc68KBE6XGWidBg2fVRnK6wMBc6R2itFKweyqamujNr7W7ouFrnKAJu304jp/+FI60cEnnmMLW/tUzSEchrzhNfDooUXVWzfQzJ1MQc+H0XDVUgU+SwYHX2jFIiD0gfftTpq/srqnsGFw1WIq+wt5S2J+VqYs13W5lGx+VO4ewF/fyXqq9Nyn+68Yhp91JPDwh8SmVDEMnWTGeiCpS2eli14zhp6fzsOa82JqIYbOq1rh9ZUyR7G/oU2a2BrqUypX1eKdu1eVSh9eFM2LN09VuIb/aIiAVB3OwREQuC+YrxaQZsjL2CvPfYkD3jnIiVsdhKImbFyi4cL9JuWVXgmAI62JuuVrDmjfNFNX3slazI1iJTXPOCilHlHUdycZMCYfou8INE90HJieDEzyZ9Ftn8fEwX8dk0af7u+M4DzUdvxY4xJTG+T6mJMueV+Nh5NTv5tE7doX7vaKB1KWwf1UTn/3ho1Yn/1CZue4rweKy2b9pdK6v5rt60xBbMvc7ZX4eOF4JJLjw/XatB6lvFfrFPz/BCRVWSambVFTbf8foDgB6ZgnkWz1csV93VW3sHQH/Hzndpd3Rvs6jo4ps9ImJBEDd7RMSCIG72iIgFwXxzvRUS9LZGJomk47jhm5Ru2ZNRkh5CQVIIudP7WSdzJph6n1wN6e8bJUvYeI7cFX1dm0wmjarqTK1Ne63asup1+YHV3RJypZ2VXpf1dK/b9yrkzrpkdfR+lfRtUuvEkSiWKL/YyYYjcjjS8QeKFLvpyCLPlXWu2B0ZAHZaqqO+mqtprJlbc+YKhW9VnFnu1c75SblIJPhPlndNu6/nlyblujubMEcEFB0XCnY+AunsidPZw6EuuqOaPVdYL1MEIj0zfxY0JMIKnxK7T/bSHoXpbRbt+ttcUx1+v2rHUXht9L8n72DEN3tExIIgbvaIiAXBXMX4YZagvTkSe/Ij+zvDA/HeTex1hhmmhSwnr7DM9j+g1MwtMst5kYrNS8x9DgB9Mo3tL6lZrrfsouNWmStsOlnHsOBMbzmJ7lRmsX3Uv9Z1XdBYvxaorKbJUtGqRueJC5059QFgr6j3xubAo5YVHVcoYnC5aL29DtuqQxz39HtLmUuHTKa9lcxyD+4S+wZ7Nv5E6YZpx4QSO0XruZaQSjLkNMqeX52XmBPxeT3WD6xp77iqakhe1jm+2bIqD5vl2CwJAA3yoDuiuXqoZE1vD9e0j5vnVk1dd2nUxyzVML7ZIyIWBHGzR0QsCOZ7Gp8CneVkXLaX5hPnpDt0ddOpghlFElWDE88bHSavmH4yWqJT35JLE3uOAnKu11R8u7lsRbvmeRbdHbEFjb9fdKeydHrOIn3P0V33VlTM7C27CIiyfq4sq8j8lk1LGvEz68r35lM3vbD+0KR8rTmdXCKnzKTLqZ0rfzp/C35O6309nT9xbCQcIHKjrWLxftdNCGFpzZKz1Rsq1gtZFkLZzRtPgZPwh0SIwbTVALB9rKrGJlknjtr2XlgFXHGEKUyn3ehNz4/KqkxxyZ72Ny8WxmOd+vX4Zo+IWBTEzR4RsSCImz0iYkEwZ9Mb0Fkf6Se9mtV9OJ1N2nXeTRTONktnzymayAWDoVUgnncyryUuTKiWqj5VcIwAbQqV2iirbrizak1XrYdUX/Peb3xE0Fuy1+4vkXcdEyBm9qYzSje8XLbXrpVUl7tIppr3rb5q2v380rcm5XX3k3+5dHVS/nLprZPykUudzZ5f+117bsF6aJ1SQ73a3DDtLpUOMQ1skuJUz68c2D6KBTo7KFldtrGi8xP2yXvPBwcSb3xSn5H22aF1oHPyA8fzzthvUFoud55Ryzun1vn01pWC3sty1er9u+Nzo1mmt7PmZ38NwAlG6QP6IYRnRGQdwO8CeBzAawB+MYRwMK2PiIiIB4sfRoz/qyGEp0MIz4w/fwLAF0IITwH4wvhzRETEmxR3I8Z/BMAHxuVPYZQD7uMzvyHAJAmr43wflEhUdyl8WOQy1hnnBVUicS514nlCgSApfc8TMnAwxlJiPbrqqV78Qvl4Ut5erZl2O+StFxJvYqTrrVoz1Ma6mm6eWFVTmVc1mn1SSZydaJlSW/1EVbnfnixum3ZN8uKqiB1HhQglWK3Z6Vqx8gcNFVtv1m2d0Jj7ub5Trp1YU16B0lKt5zbwo0H3yem8BkP7jto7UlNcyWWaLVO21kaLnoUzrwmJ8V4UTsmadxs5xIH2uVtQM9/ahvV+yzNVvZpd63FZSE8nkKt3rB2tQd/zpmUsjde+9wwknPXNHgD8exH5mog8O/7bVgjh+rh8A8DWGfuKiIh4ADjrm/39IYRrInIewOdF5HtcGUIIIqcT4ox/HJ4FgGx5+gFGRETE/cWZ3uwhhGvj/7cB/AFGqZpvisgFABj/vz3lu8+FEJ4JITyTVaZ7PkVERNxf3PHNLiJVAEkI4WRc/usA/ncAnwXwUQC/Ov7/M3fqa2R6GwkAieOnGBLJoeMwMBiUSIDwmYZJlxs6QYN5uzkbMuu/gCUP8Hr/gJS5It3AWsnq9gdVihprWDNLyE4/OwCAjHQ3TnNcdJO1L9p/e2AfYTHRPlZSHdexc0X9TPM9k3Iv2DGyyfG1lpq5/mzngh3HtdVJWXr2YeRbOn6en27fXuvPdjVv21bN6rmcTpuJMvw5y5WujqPbtfOxuaznAIUtvS9ONw3A6PA+6k0454C7z0BrZFAncpOKJek4v6LjZ1MbYO+H3WpbPavbt0hn94SqZ8FZxPgtAH8gI1t3BuD/CyH8kYh8FcDvicjHALwO4Bd/6KtHRETMDXfc7CGEVwC8+5S/7wH40P0YVERExL3HnHnjAwbrI9PIoOuIG5oc9eY8mEiKZTFeUivOsZjTdymEh20VH7vkEXXDmYxeqGjEF5ykx+Iuc32nTqzMKF204+FAdkLRdx07xhvN9UmZUw55cgm+t9Rxyx2U1FTWGuh8MIEEAHz/hvK79XtWtF5dUdG3TObMoxM7IdkxRSM6taxLhB79GXO1f6AqycClkDpX1XGwSfFS9dC0q3dVpGUzHGC515/a0rTP//b1d5h2zaaK3YOi4/on02FiJXAkZCZmVabbtiJ4b4nE876t4yg4Nul6dYXXavPYPs/QHD+LyEEXERERN3tExIIgbvaIiAXBXHX2JBuisjrSvbzpYFAgXbbtWE44XxcxjBRy62bYI7NOz5lg2EzH6YUbbTuO3Y7qfE+U7TiWyHW0nqqOV3F5vcqkY3cSq+eW9vT3Nbd8lkDQMfcpf1nDpy8rk7nHuR3vVVVpeyVTp8ak4aMMdQ5c9l/s0/wvbarenGV2vjvEkpM2XHQfMQNxxFfi9FDOQVdvWnMVR7Bx5JxneuHovr1D67rMXPcf2lRfsCUXHdfr6dwPMjshfZpvbxbm86WUDmh6Tbv+muT62nBusHv8gMnv7F3Lb5h2lyra7qvhUVO3e3UVd0J8s0dELAjiZo+IWBDMV4xPApYrIxFs6CKXOiTOhdR7MNEHKnuTEZNHBmfGSVjkn85FYPrw5BXrmZe7R2j0rfi5VlEz0YHjMS+cEPHgqzZCKz9wdp0x+lVnxqnpY+us2HnskoknIROduxW015l73s03ifEs3hZza19Lz6mI3yw6fYKeZ6uj439sw1IehA0dx3HdpSHOdH7aZEbsu9ReywUV64su6u3mvs7/n64+pmN33pEc2iE+coy8HvtOpaIM3Mb8mDTtczk51nsrVawu0GnpvT3fUdWLCT0B4LGKpqp+ZNnO435trH7eg6i3iIiIP+eImz0iYkEwXw66oUw8w1h0AQBQEEHmRCAWjwKldRr0XIon4m1L3El9Sl5tHICSOi88Doypu6Puc5l6Y/mMo4wqcYVlNStWhlTvO6vbunSH1ISBjist2MeUl1VtyDetXMkifnFHxdvuuuMxr+g4fAopoRPmAYnjqfMsM6Qay/aEvENWDg5Cqrrspo8/pCQd//WNx01djzjuOCjGk3kw6cVja1a8fXWoXonfPVARueCsAkxukjjOv0GBuAG96kjL2AzLqYqB0oB1M/s8mYiie6zP9pu4aNod0LOuOgtQrTaa/ySJYnxExMIjbvaIiAVB3OwREQuC+ers/QSNMc92cuz00IPpnmWcHoxzWXUc4XmH9JWhJxQkHarAOrXT3Tgi6aBn9eFLuepdbfJ2O3GmNyYgKDle935Z+wyp+60lPT20SbdtWXIMaerntGK9sdImkW5uH07Kw9xyrQuTXnh+T/JY7NW1/6Y738hIt60U7fkDo0umtxMXffdEVXX2zZolnDzp0NkEEXuspnY+aqnO1duWbpq6A0odfVDXuS+7SEImNPGW2bRKqcDdOZGQJyJzgAxLLvyMSVMb9rxKipQjgM6aug37bK8mq5PypfVDU3crX4CPKmTEN3tExIIgbvaIiAXBXMV46QnyN0YiTPHQpUreo3S0R1YUEZKxWuvk3VW1fWSUTvc2sxyZf3opm+HstRpdNr1Z8bwx1M9H5ErFQRoAcNRRUbXvONeEmg6K7reW7jO0yZQ18GmZtX9pWfFZWPzvap14vcZ8aUYVpeXqlexyqZSUZ66aTyfYaDd1Tm+eOI79in4uZ/ZeDonAIyEvtpoz33WIA7/sUkdzkAyL8ScN5/HnedgJSzVVG068591+2TcfD9i1K+kzDC7QK/Ba5a85L1AO7mo6fjrvEXjqkO7YIiIi4scCcbNHRCwI4maPiFgQzFVnT9vA2vdGukVlx+pWxnXUqR/9JXIxLRN3u9P7Q0afnQWiX2T2Ci3P4t/2ZqLdnhIhMJlj30Xw1duqmPvIvIQIM/subTWYNGFIZjins/NdS9fp7H3SDXtalx5bPTenKKx2251v5EyiTqYlR+LJZJdFF6HFJBXDrt5X/dCaM/dXlSxkq2R54w/bp+vDPr8d8+pvFY5N3fqqmvP4bOX1fZudqNXQOp/ciAk/V8rWLfiN13SMTGQhff8ePT2fGwCAiEelN/39O6D59u6+tyIEvSsxI77ZIyIWBHGzR0QsCOYrxneGWHl5ZK7Jbjo3ORI/hyvWPMORbmV1uIIEO/x+Vdv1vQRIkW4cZTQcWFVgQKJq3+XubZL73jFdoN61prcOmUh8/4HE+G7N8bZRNJswMVyY4Q4orn+OkCOPvOSobtqV9lUlaVx04+C5yrUPL95yKqdiZsV45ptnE5Ic2We2fU6f9X+78ZKpG5LC8vLR5qT8g5O1qe3eUrIpB5fI2+4vrFyflL24+9JA+++6iMzeQO9zpWjFeI56S1lT8mnHh9NNeymZN007Z74bNnUcB027wB9acsT9p+BMb3YRWRWRfyUi3xOR50Xkp0VkXUQ+LyIvjv+PKVojIt7EOKsY/xsA/iiE8HaMUkE9D+ATAL4QQngKwBfGnyMiIt6kOEsW1xUAfwXAfw8AIYQugK6IfATAB8bNPgXgSwA+PrOvwRDp0UisCid1V0knkiV7Ql7YU1HSCFhDm7qptUFi8Kq7+LRDSk8ywCK+86oaTqnzp/FM1jB0p7IJSefeA3BYI48xFsf7TkRjsd4F04SSzhD3Huo2yCQ/0hPmxHljcaZZqei12YsNsFPqT8g3y3q96yVlxyhct0tud0+fYe8Ra524UCTvt5Ke4r+0t2nanZD1YzO39/lw8VDHSKL7k7Vd046f50s3bf9MN95zHpFDJvQgD06m6gaAXpG+53jiOICGkvDetmQ5QOl4z6a56o65Arv96Vv6LG/2JwDsAPh/ReTrIvL/jFM3b4UQbilBNzDK9hoREfEmxVk2ewbgpwD8ZgjhPQAacCJ7CCFgyrtTRJ4Vkcsicrk7aJ7WJCIiYg44y2a/CuBqCOEr48//CqPNf1NELgDA+P/t074cQnguhPBMCOGZPK2c1iQiImIOOEt+9hsickVE3hZC+D5GOdm/O/73UQC/Ov7/M3e8mgjCOM2T+JxD3KztyBxPGqe2y4tW1ywdMImi06NJZ+qTSUNyRy7IprehHSN7anmPsalwJhc2a/Wc6a27prpnuaT6e3BecuhNv/awrHOQJuT95vpgj7q07X6EacgZkSn4MwzmlG/07TnLCqVYLpb12r3cRZud6Hi/e3LBVL2tpkQUb6lpuuWdltVXd4/UfPcfX3/K1F1cU71/q6weetXMehT+5KqmWiq5yLnXDpW00qeoCmVdP4MSkXM23XMHrb8V601n9P4znpl78pf22AsveJMf4ax29v8ZwO+ISA7gFQD/w3hUvyciHwPwOoBfPGNfERERDwBn2uwhhG8AeOaUqg/d09FERETcN8zVgy4IEPLRJRPv+UXmJcO/BkvkIPS99MiK98UDFUfzdS8O6ecOed4NlqxI1SfzTNeJ8ZwOijnNey5AZMDBLx1bx+aTgYvB6ayQR9qGpi3yd2KJLawaEmh+hFSB20j5KLgmc+emwqIgzUfmiD4K5CVXSJxoSiJ/KVexuOVEWCE1542GJbBnMf6pspYH5+yMfCt7eFJ+/abl2nvluprR+lv6va2KDbp5qKgBNO9ff9nUceqpl1tWjM+qpKLQ3+Wm41g8oufi1lVvnVQlylJ8W1AMrZ0zcFXchugbHxGxIIibPSJiQRA3e0TEgmCuOjsSwbA4umTqdHbjAjpwpiUiYTDptDrWRFeokw554m+NXFjzhMouskj0eweOPOG1luqDO2019wRnkmKSBxPRBCAlN8rE3eYgJ1LMdT1/KLi5So5Vh7zNpZJJKyuks7dttBabN/O6y3tG5wzMDb9StXztJYp0W81tXUY6fI3IH05W7DMbELFF27l6cpRhiZIHPF39gWnHZyk+Guzgqp4DvFHQsie3vNrSOK4Ly4em7h3LNybl3aY1+7W6ZP6lHAH1vo3cTFuUy7Bhn2e/Rp+XiXzErauEzlKCf03fMt/NIA+Nb/aIiAVB3OwREQsCCZ4Y4X5eTGQHIwecTQC7d2h+v/FmGAMQx+ERx2Hxw47jsRDCudMq5rrZJxcVuRxCOM1JZ6HGEMcRxzHPcUQxPiJiQRA3e0TEguBBbfbnHtB1GW+GMQBxHB5xHBb3bBwPRGePiIiYP6IYHxGxIJjrZheRD4vI90XkJRGZGxutiPy2iGyLyLfpb3OnwhaRR0TkiyLyXRH5joj8yoMYi4iURORPROSb43H8k/HfnxCRr4yfz++O+QvuO0QkHfMbfu5BjUNEXhORb4nIN0Tk8vhvD2KN3Dfa9rltdhFJAfzfAP4GgHcC+CUReeecLv/PAXzY/e1BUGH3AfyDEMI7AbwPwC+P52DeY+kA+GAI4d0AngbwYRF5H4BfA/DrIYS3AjgA8LH7PI5b+BWM6Mlv4UGN46+GEJ4mU9eDWCP3j7Y9hDCXfwB+GsC/o8+fBPDJOV7/cQDfps/fB3BhXL4A4PvzGguN4TMAfvZBjgVABcCfAvjLGDlvZKc9r/t4/UvjBfxBAJ/DyLv7QYzjNQCb7m9zfS4AVgC8ivFZ2r0exzzF+IsArtDnq+O/PSg8UCpsEXkcwHsAfOVBjGUsOn8DI6LQzwN4GcBhCOFWdMu8ns8/A/CPoHl3Nx7QOAKAfy8iXxORZ8d/m/dzua+07fGADrOpsO8HRKQG4F8D+HshBJNjeF5jCSEMQghPY/RmfS+At9/va3qIyM8D2A4hfG3e1z4F7w8h/BRGauYvi8hf4co5PZe7om2/E+a52a8BeIQ+Xxr/7UHhTFTY9xoiUsBoo/9OCOH3H+RYACCEcAjgixiJy6sikxjfeTyfnwHwt0TkNQCfxkiU/40HMA6EEK6N/98G8AcY/QDO+7ncFW37nTDPzf5VAE+NT1pzAH8bwGfneH2Pz2JEgQ2clQr7LiEjAr3fAvB8COGfPqixiMg5kVGCLBEpY3Ru8DxGm/4X5jWOEMInQwiXQgiPY7Qe/mMI4e/OexwiUhWRpVtlAH8dwLcx5+cSQrgB4IqIvG38p1u07fdmHPf74MMdNPwcgBcw0g//1zle918AuI4RJ+BVjE53NzA6GHoRwH8AsD6HcbwfIxHszwB8Y/zv5+Y9FgB/EcDXx+P4NoD/bfz3JwH8CYCXAPxLAMU5PqMPAPjcgxjH+HrfHP/7zq21+YDWyNMALo+fzb8BsHavxhE96CIiFgTxgC4iYkEQN3tExIIgbvaIiAVB3OwREQuCuNkjIhYEcbNHRCwI4maPiFgQxM0eEbEg+P8BLp2jKkV/280AAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":"#plotting the type of defect or no defect categorically\n\nplt.figure(figsize=(10, 6), dpi=80)\nsns.countplot(x='indication_type', data=df);","metadata":{"trusted":true},"execution_count":6,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 800x480 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAArUAAAGcCAYAAADH61giAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAhKUlEQVR4nO3deZhldX3n8fcHG3EpbdTQaaDBJrIlimlHiCGC4OAWzUJEjUu79CQRkkhkOjomaIzRZALJiFGZCIzO05ElY0RDFjMY4wIIdEQR2QI0o23brEIkgI5Ayzd/3FPmUnR1V92qW7d+t9+v5zlPn/P7nuV37qlb/bmnfvfeVBWSJElSy3YadQckSZKkuTLUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvOWjLoDi8Euu+xSu+2226i7IUmSpGncdNNN91fVLtPVDbXAbrvtxubNm0fdDUmSJE0jybe3VXf4gSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWre0ENtkg8k2Zikkqzqa98lyalJNiS5KslZfbX9klyS5IYklyV56lxrkiRJGl8Lcaf2XOAw4JtT2k8CCti/qg4C3tJXOx04o6r2B04G1s1DTZIkSWMqVbUwB0o2AkdX1RVJHgvcAqyoqrunrLcMuBF4YlVtSZJu3cOAuwepVdWN2+rbihUravPmzfN5upIkSZpHSW6qqhXT1Uc1pvYpwL8CJyb5cpKLkhzV1fYCbqmqLQDVS92bgL3nUJMkSdIYWzLC4z4ZuLaqfifJM4DPLNQY2CRrgbWTy0uXLp3xts9860eH0aUdzlf+9HXzvs9N7z5o3ve5o9r7nVfN6/6e/cFnz+v+dmQXH3/xvO/zguccMe/73BEdceEF877PU3/77+Z9nzuqN7335+d1f3+0+mXzur8d2dvPOnde9jOqO7WbgAeBswGq6qvAN4CDgG8BuydZAtANI9i722bQ2kNU1SlVtWJympiYGOa5SpIkachGEmqr6g7gs8ALAZLsA+wD/EtV3Q5cDqzuVj8G2FxVNw5aW4hzkiRJ0ugMffhBktOBlwDLgU8nuaeq9gWOAz6S5GR6d22Praqbus2OBdYlOZHeG8DW9O1y0JokSZLG1NBDbVUdO03714HnTlO7Hjh0PmuSJEkaX36jmCRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvOGHmqTfCDJxiSVZNVW6mu62tF9bcuSnJ9kQ5KrkzxnrjVJkiSNr4W4U3sucBjwzamFJCuBXwPWTymdBKyvqv2ANcA5SXaeY02SJEljauihtqourKrNU9uT7AR8GDgeuG9K+RXAad32lwE3A0fMsSZJkqQxNcoxtWuBi6vqK/2NSZ4E7FxVt/Y1bwT2HrQ2hL5LkiRpEVkyioMmeRpwDDCSMa9J1tIL1QAsXbp0FN2QJEnSPBnVndrDgZXAhiQbgZ8Gzkjy61V1J7AlyfK+9VcCmwatTT14VZ1SVSsmp4mJifk7M0mSJC24kYTaqvpQVe1eVSuraiW9N4q9sao+1K3yceA4gCSHAHsCF8yxJkmSpDE19OEHSU4HXgIsBz6d5J6q2nc7m70NODPJBuB+YHVVPTDHmiRJksbU0ENtVR07g3WOnLJ8G/CCadYdqCZJkqTx5TeKSZIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYNPdQm+UCSjUkqyaqu7VFJzktyQ5KvJflMkn37tlmW5PwkG5JcneQ5c61JkiRpfC3EndpzgcOAb05pPwM4oKp+Evgb4MN9tZOA9VW1H7AGOCfJznOsSZIkaUwNPdRW1YVVtXlK2/er6h+qqrqm9cDKvlVeAZzWrXsZcDNwxBxrkiRJGlOLZUztm+ndrSXJk4Cdq+rWvvpGYO9Ba1MPlmRtks2T07333juvJyNJkqSFNfJQm+REYF/gdxfqmFV1SlWtmJwmJiYW6tCSJEkagpGG2iRvAV4K/GxVfQ+gqu4EtiRZ3rfqSmDToLXhnYEkSZIWg5GF2iRrgVcBz6+qu6aUPw4c1613CLAncMEca5IkSRpTS4Z9gCSnAy8BlgOfTnIPcCTwXuDrwOeTANxXVc/qNnsbcGaSDcD9wOqqemCONUmSJI2poYfaqjp2mlK2sc1twAvmsyZJkqTxNfI3ikmSJElzZaiVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzhh5qk3wgycYklWRVX/t+SS5JckOSy5I8dZg1SZIkja+FuFN7LnAY8M0p7acDZ1TV/sDJwLoh1yRJkjSmhh5qq+rCqtrc35ZkGXAwcFbX9AlgryT7DqM2rHOTJEnS4jCqMbV7AbdU1RaAqipgE7D3kGoPkWRtks2T07333jvUk5UkSdJw7ZBvFKuqU6pqxeQ0MTEx6i5JkiRpDpaM6LjfAnZPsqSqtiQJvTuqm4C7h1CTJEnSGBvJndqquh24HFjdNR0DbK6qG4dRG/4ZSZIkaZSGfqc2yenAS4DlwKeT3FNV+wLHAuuSnEjvLuuavs2GUZMkSdKYGnqorapjp2m/Hjh0oWqSJEkaXzvkG8UkSZI0Xgy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUvBmH2iRPn0mbJEmStNBmc6d23QzbJEmSpAW1ZHsrJFkGLAceneQgIF1pKfDYIfZNkiRJmpHthlrgVcAJwB7A3/a1/xvwJ0PokyRJkjQr2w21VfV+4P1Jfq+q3rMAfZIkSZJmZSZ3agGoqvck2YneUIQlfe2bhtExSZIkaaZmHGqTvB74IPAA8GDXXMCyIfRLkiRJmrEZh1rgncAhVXX9sDojSZIkDWI2H+l1h4FWkiRJi9FsQu15SU5IsizJ4yenofVMkiRJmqHZDD/4o+7fU+iNpU337yPmu1OSJEnSbMzm0w9mc1dXkiRJWjAGVUmSJDVvNh/p9SC94QYPUVUOP5AkSdJIzWZM7eP65h8NvA7H00qSJGkRmPHwg6r6bt90R1WdArxsiH2TJEmSZmTgMbVJDgR+ZB77IkmSJA1kNmNqv8N/jKmd3O74ee+RJEmSNEuzGVO7qm9+C3BrVf1gfrsjSZIkzd5sxtR+E/g2sCfwZGCXuR48yYuTXJ7kiiRXJ3l9174syflJNnTtz+nbZqCaJEmSxtdshh/8DPAJ4Nau6UeTHFNVlw5y4CQBzgKOrKork6wErkvySeAkYH1VvSjJIcBfJ9mnqh6YQ02SJEljajZvFDsFeFlVPaOqnkHvkw/eN8fjF7BrN/944E7gPuAVwGkAVXUZcDNwRLfeoDVJkiSNqdmMqX10VV08uVBVlyR51KAHrqpK8svAJ5N8F3gC8FJ6n4e7c1Xd2rf6RmDvJE8apDb12EnWAmsnl5cuXTroaUiSJGkRmM2d2nuTPG9yIclRwHcHPXCSJcA7gJdW1ZOBo4AzmV3QHkhVnVJVKyaniYmJYR9SkiRJQzSbAPlb9O6qTn7iwU707qwOahWwR1VdCL3hAkk2A08HtiRZ3nfXdSWwqaruTDLr2hz6KEmSpAbM5k7tHsDBwC900yHA7nM49reA3ZP8OECSfYGnANcDHweO69oPofeJCxd02w1akyRJ0piazZ3a91TVKnof6zX56QXvAT41yIGr6rYkbwT+KsmD9AL2m6pqU5K3AWcm2QDcD6zu+wSDQWuSJEkaUwOPX+3e6PWIuRy8qv4S+MuttN8GvGCabQaqSZIkaXzNZvjBPd1n1QKQ5NnAPfPfJUmSJGl2ZnOn9r/R+zKD67rl/YBfmv8uSZIkSbMz41BbVZd2b+o6tGu6pKruGkqvJEmSpFmY1ZjaqvoO8A9D6oskSZI0kNmMqZUkSZIWJUOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeSMNtUl2SXJqkg1JrkpyVte+X5JLktyQ5LIkT+3bZqCaJEmSxteo79SeBBSwf1UdBLylaz8dOKOq9gdOBtb1bTNoTZIkSWNqZKE2yWOBXwHeXlUFUFW3JlkGHAyc1a36CWCvJPsOWluYM5IkSdKojPJO7VOAfwVOTPLlJBclOQrYC7ilqrYAdIF3E7D3HGqSJEkaY6MMtUuAJwPXVtXBwG8BH+vahyrJ2iSbJ6d777132IeUJEnSEI0y1G4CHgTOBqiqrwLfoBd0d0+yBCBJ6N1t3QR8a8DaQ1TVKVW1YnKamJgY6olKkiRpuEYWaqvqDuCzwAsBkuwD7ANcDFwOrO5WPQbYXFU3VtXtg9QW4nwkSZI0OkP/U/92HAd8JMnJ9O7aHltVNyU5FliX5ETgbmBN3zaD1iRJkjSmRhpqq+rrwHO30n49cOg02wxUkyRJ0vga9efUSpIkSXNmqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMWRahNsiZJJTm6W16W5PwkG5JcneQ5fesOVJMkSdL4GnmoTbIS+DVgfV/zScD6qtoPWAOck2TnOdYkSZI0pkYaapPsBHwYOB64r6/0CuA0gKq6DLgZOGKONUmSJI2pUd+pXQtcXFVfmWxI8iRg56q6tW+9jcDeg9aG1HdJkiQtEktGdeAkTwOOARZ83GuStfQCNQBLly5d6C5IkiRpHo3yTu3hwEpgQ5KNwE8DZ9AbQrAlyfK+dVcCm6rqzkFqUw9cVadU1YrJaWJiYt5OSpIkSQtvZKG2qj5UVbtX1cqqWknvjWJvrKoPAR8HjgNIcgiwJ3BBt+mgNUmSJI2pkQ0/2I63AWcm2QDcD6yuqgfmWJMkSdKYWjShtqqO7Ju/DXjBNOsNVJMkSdL4GvWnH0iSJElzZqiVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzRhZqkzwqyXlJbkjytSSfSbJvV1uW5PwkG5JcneQ5fdsNVJMkSdL4GvWd2jOAA6rqJ4G/AT7ctZ8ErK+q/YA1wDlJdp5jTZIkSWNqZKG2qr5fVf9QVdU1rQdWdvOvAE7r1rsMuBk4Yo41SZIkjalR36nt92bgb5I8Cdi5qm7tq20E9h60NtReS5IkaeSWjLoDAElOBPYFjgIevQDHWwusnVxeunTpsA8pSZKkIRr5ndokbwFeCvxsVX2vqu4EtiRZ3rfaSmDToLWpx6yqU6pqxeQ0MTExvyclSZKkBTXSUNvdMX0V8Pyququv9HHguG6dQ4A9gQvmWJMkSdKYGtnwgyQrgPcCXwc+nwTgvqp6FvA24MwkG4D7gdVV9UC36aA1SZIkjamRhdqq2gxkmtptwAvmsyZJkqTxNfIxtZIkSdJcGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktQ8Q60kSZKaZ6iVJElS8wy1kiRJap6hVpIkSc0z1EqSJKl5hlpJkiQ1z1ArSZKk5hlqJUmS1DxDrSRJkppnqJUkSVLzDLWSJElqnqFWkiRJzTPUSpIkqXmGWkmSJDXPUCtJkqTmGWolSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpeYZaSZIkNc9QK0mSpOYZaiVJktS8sQu1SfZLckmSG5JcluSpo+6TJEmShmvsQi1wOnBGVe0PnAysG213JEmSNGxjFWqTLAMOBs7qmj4B7JVk39H1SpIkScM2VqEW2Au4paq2AFRVAZuAvUfaK0mSJA1VerlvPCR5JnBOVR3Q1/Yl4Heq6nN9bWuBtX2bLgduXbCODt8EcO+oO6Gt8tosbl6fxctrs3h5bRa3cbo+u1XVLtMVxy3ULgNuBJ5YVVuSBLgFOKyqbhxt7xZOks1VtWLU/dDDeW0WN6/P4uW1Wby8NovbjnR9xmr4QVXdDlwOrO6ajgE270iBVpIkaUe0ZNQdGIJjgXVJTgTuBtaMuD+SJEkasrELtVV1PXDoqPsxYqeMugOaltdmcfP6LF5em8XLa7O47TDXZ6zG1EqSJGnHNFZjaiVJkrRjMtRKkiSpeYbaHVySn0vyhVH3Y0eQZGWSu0bdD81ckjckOXDU/RhXSSrJrrPcxueRdhhJ3pXkUd38uiQnLPDxm8oIhlppkUsydm/obMgbAEOtRqYL8cfNYv1Zv1CYi9n2bxb73SPJRfOwnx+Gwm753UleM9f9LqDfBx613bX6JNkpyQ6Z73bIk25Nkl9M8i9Jvpbk5CR3dL9IDk5ySZIrk3wpybP7tnlt135lkk8l2bNr3znJnyfZ0H3b2nNHdmJjIMmhSb7YXZsru2s17XWZsu0Lk1zerXdBkp/o2o9Mck2SjyS5AvilhTyncTbN9dqYZFXfOl/ursGvAgcD70tyRZIXj6zj4+03uufJN5L88CMYZ/E8OiTJ57rr9tUkL1+4ri+IlcC8h8Z5tJIh9K+qbq6qw+dhVw8JhVX1zqo6ex72O3RJTutmL+r+L1gG/HiSzya5IcknkzyyW/ddST6R5NPA1cDu3f8xX0zyle459Nxu3eVJPt+1X5Pk1MkQ3HxGqCqnRTzR+yG+EziwW14DFLA/sAl4Ydd+GL2v+p0AntbN79nV3g78327+N4HPAo/sps8DXxj1ebY4AU8EbgMO75Z36q7XdNdlJXDXlOt6ULf8GuBaIMCRwIPAEaM+x3GaprleTwQ2Aqv61vsycGQ3/wXg6FH3fVyn7nfZb3fzBwL30PuoyUfO8Hm0K/BVYPdu+Ue67fYc9bn1nd/bgX/ufs6OBn63+xnbMPlz1q37QuCLwFeALwHP7dqvA/4/cAXwt13b/wAu69ouBA6Ycsxdt9OvNd22X+v6srJrfy1wZTd9qu//kDcA/wT8JXBVt82PzaF/231M+q9z33Yndo/NN4A1fbWtHg84rdvuqq62DFgHnNDVJ4D/TS8EXg38ft8+v9Dt9yLg/wGnjfBnaNdufl33uD0GeARwMfCqrvYu4GbgR7vlHwMuBR7fLe9L7xtWd6EX8ie69kcAfw+8sltuOiOMvANO27lA8AvA5/uWdwLuAw4CNk5Z92v0fvkfD6zra39Ct80jgE8Cr++rvbalH9jFNAEvAS6c0rat6/LDX9LAz0993IG7gBX0Qu2Noz6/cZu2dr269o0Yakd1TQpY3rf8ne45MNPn0YuBf6MXWCanTcB/HvW59Z3fm7v5o4B7gTd0yy8HLuvmtxVAjgSumLLf3frmXwmcP+WYu26jT0fSC4WTLwQe003buhnyhu5x3qdbPgk4vW9/s+3fTB6TH17nvu0e9gJoto8HDw21JwNn0/t/9bH0XiD9clf7AvDX9F5kPbp7zA4d0c/Qrn19/52+2vuAd3Tz7wI+3Ff7DeDbPPS5cROwX3e9/ye959SV3XU/qduu6YzgWL3xMt2HDm/rw4j9oOLhG+Qxvnfee6HpbKH3gm/SrMavac6+3zf/A6b/UqCtPY8CXFNVPzPvvZo/H+v+/TK94PR/uuUv0QsYAC+iF2QvTDK53YPA3tPs8/lJjgcex3/8xWGmXgKcWVW3AFTV9wC6P02fX1U3dev9OfDOJJPPjUur6huT8/Runkxne/2byWOyNWd3fb4uyRZgObB5BsebzvPoBeUHge8m+Sjw/L7+fayqtgBbuj//P4XeuY/Stp4v/f9vBPhMVb166g6SvIPeXetnVdX3k5zC9L/3msoIjqld/NYDT09yQLe8mt6fBO4DdkryfIAkP0PvCX4FvT8XvCjJHt02xwGfraof0PsT0upu3Mwj8WuE5+ISYL8kh0NvcD69P29Pd136rQcOSvK0br1X0nsVfRMaloddryRPBG4EntW1/RRwQN82dwNLF7qj4npm9jy6BNgnyfMmG5KsmhxnuEhMhpAfAFRV//JkIJkMIKv6pj2rasPUnSXZGzgVWF1VT6N3Z3IYL8SmhpkZvfiYYf9m8phszcP6MM+Px0DnPGT3MNjvoE8Dz0vy9MmG7vcb9P56e2sXaJfTu0M+qemMYKhd5KrqduBXgfO6V4oH0Xs1djvwUuAPklwJ/Bnwsqq6t6quBt4KnN/VDgd+rdvl/6I3bulaeuO3rliwkxkzVfUdem/iOql7nC+nF462el2mbPtteuNoP9qt9+vAy6v7e4/m3zTX69nAO4DfTPI14L8A1/RtdgZwom8UW1hVdT8zex59h96dxxO7N/9dS+9P463937atADL1hdVS4AHglvRu675plsf6O3qhZffuOI9J8hi2fTNkW+a7f7O1veNtKxT+E/Ar6XksvT+1/+PQejqY9wKf6Xuj2IxU1Y3Aq4HTu+fGvwAndOX3A89Kcg1wJr3HYVLTGcGvyW1AksdV1T3d/NHAH1fVj4+2V5KkbUlSwBOq6q4kE8A9VZWutgK4rqomuuXnAe+hN97xkcBXq+rV6X2k33n0xph+vap+Icn76b3f4s6u9paq2nXqMbfRr9cDv03vzuT99F4wfDPJa+ndEAH4FvDGqropyRvojS0/utv+57pjHjmX/m3rMUmykt5Y3a2eV5I7gIOrauN2jvf79G4gfA94AfAn3X7/rDv+B4DJFxAfr6o/6Lb7AvBnVXVet3wu8PdVtW66x1WjZ6htQJITgV+mN+7vbuBNVXX5aHslSZK0eBhqJUmS1Dw//UCSpDGT5Ms8/P/4a6qqpW/TkmbFO7WSJElqXmvvEJUkSZIexlArSZKk5hlqJUmS1DxDrSTNUvdlDI8bYLtzu8/8JMm7kwz8pp0kRyZ5Ud/yHkkuGnR/szmWJC1GfvqBJM1SVa2ah328c467OBLYFTi/29/N9L49cBgecixJWoy8UytJs5SkkuzazW/s7rpemuQbSd7Rt96BSS5Jck2S84DH99XWJTmhm39kkj9NcnX3lZbnd+0HJfliksuTXDu57ySr6H2N6Wu6u8bvTLIyyV19+39ht92VSS5I8hNd+5Hdcf68O9Y1SQ7exrlu7Vindl8KM7nOAUm+lWRJkncl+USSzyW5LsnfJXlSt97OSU5K8qVuX3+V5AlzuhiS1DHUStLc7VpVhwKHAG9NsmfXfibwkap6KvB7wBHTbP+7wP7AM6vqJ+l9Bz3ARuCoqvpPwDOBY5L8dFVdAZwGnF1Vq6rq3f07S7IMOAd4fVU9HTgDODdJulUOBP6iO9YHgT+a7sSmOdYHgTcmeUS32m8AZ1TVlm75cODVVXUgva9b/eOu/a3Ad6vqp7q73VcBfzjdsSVpNgy1kjR35wBU1R3A14F9kjweWAWs62pXAV+cZvufA95fVfd16367a3808OEkVwHrgSd3+9yeZwFXdcekqs4G9gAmw/aNVfXP3fylwFNmcpKTqup64FrgF5M8FngVveA86VNVdWs3fwbwvG7+aGB1d5f2im67fWZzbEmajmNqJWnuvt83/wOm/90622+7+e/AHcAzqmpLkk8Cjxqgf1PNtL/b8n7gbcBuwGeq6rZtrDt53gGOr6p/HOB4krRN3qmVpCGoqruBrwKvA0jyVOCwaVb/W+DNSXbp1t2ta38CsLkLtAcAz+/b5m5g6TT7Ww8clORp3f5eCdzUTYPY2rH+EVgOvAM4dUrtxUl+tJv/VeCfuvnzgP+a5DFdvx7TPS6SNGeGWkkantfRG3t6Nb2xoxdOs97JwA3A5d2f5f+ia/9DYE2SK4GTgM/1bfPXwKrJN2/176wbvvAa4KPdtr8OvLwG/170hx2r29dHgNur6tIp618EnJPkOnpDJibfVHYycBnwz12/1jOz4RSStF0Z/HecJGlHluTvgY9V1Zl9be+i98a5E0bVL0k7Ju/USpJmJcnBSW4EHqR7k5wkjZp3aiVJk59Hu24rpb+oqvctbG8kafYMtZIkSWqeww8kSZLUPEOtJEmSmmeolSRJUvMMtZIkSWqeoVaSJEnNM9RKkiSpef8O6RoZQ4ExRVwAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"### **Data Transformation & train-test splitting**","metadata":{}},{"cell_type":"code","source":"#Extracting labels(type of defects) from the whole dataframe\n\ny = df[[\"indication_type\"]]\ny = pd.get_dummies(y)\ny.columns = ['Color','Cut','No Defect','Hole','Metal_Contamination','Thread']\n\ny[:5]","metadata":{"trusted":true},"execution_count":7,"outputs":[{"execution_count":7,"output_type":"execute_result","data":{"text/plain":" Color Cut No Defect Hole Metal_Contamination Thread\n0 0 0 1 0 0 0\n1 0 0 1 0 0 0\n2 0 0 1 0 0 0\n3 0 0 1 0 0 0\n4 0 0 1 0 0 0","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Color</th>\n <th>Cut</th>\n <th>No Defect</th>\n <th>Hole</th>\n <th>Metal_Contamination</th>\n <th>Thread</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}}]},{"cell_type":"code","source":"X.shape, y.shape","metadata":{"trusted":true},"execution_count":8,"outputs":[{"execution_count":8,"output_type":"execute_result","data":{"text/plain":"((96000, 64, 64, 1), (96000, 6))"},"metadata":{}}]},{"cell_type":"code","source":"#splitting randomly to remove order\n\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\nX_train.shape,X_test.shape,y_train.shape,y_test.shape","metadata":{"trusted":true},"execution_count":50,"outputs":[{"execution_count":50,"output_type":"execute_result","data":{"text/plain":"((64320, 64, 64, 1), (31680, 64, 64, 1), (64320, 6), (31680, 6))"},"metadata":{}}]},{"cell_type":"code","source":"# X_train = X_train[:int(len(X_train)/3)][:][:][:]\n# X_test = X_test[:int(len(X_test)/5)][:][:][:]\n# y_train = y_train[:int(len(y_train)/3)][:][:][:]\n# y_test = y_test[:int(len(y_test)/5)][:][:][:]\n\n# X_train.shape,X_test.shape,y_train.shape,y_test.shape","metadata":{"trusted":true},"execution_count":46,"outputs":[{"execution_count":46,"output_type":"execute_result","data":{"text/plain":"((21440, 64, 64, 1), (6336, 64, 64, 1), (21440, 6), (6336, 6))"},"metadata":{}}]},{"cell_type":"markdown","source":"### **Image Data Generator**","metadata":{}},{"cell_type":"code","source":"#transforming and creating batches to feed in our model\n\ndatagen = ImageDataGenerator(\n featurewise_center=True,\n featurewise_std_normalization=True,\n rotation_range=20,\n width_shift_range=0.2,\n height_shift_range=0.2,\n horizontal_flip=True)\n\ndatagen.fit(X_train)\nbs=32\n\ntrain_batches = datagen.flow(X_train, y_train, batch_size=bs)\ntest_batches = datagen.flow(X_test, y_test, batch_size=bs)\ntype(train_batches)","metadata":{"trusted":true},"execution_count":51,"outputs":[{"execution_count":51,"output_type":"execute_result","data":{"text/plain":"tensorflow.python.keras.preprocessing.image.NumpyArrayIterator"},"metadata":{}}]},{"cell_type":"markdown","source":"### **CNN MODEL**","metadata":{}},{"cell_type":"code","source":"#model building\n\nmodel = Sequential()\nmodel.add(layers.Conv2D(100, (3, 3), activation='relu', input_shape=(64, 64, 1)))\nmodel.add(layers.MaxPooling2D((2, 2)))\nmodel.add(layers.Conv2D(64, (3, 3), activation='relu'))\nmodel.add(layers.MaxPooling2D((2, 2)))\nmodel.add(layers.Conv2D(64, (3, 3), activation='relu'))\nmodel.add(layers.Flatten())\nmodel.add(layers.Dense(32, activation='relu'))\nmodel.add(layers.Dense(6,activation='softmax'))\n\nmodel.compile(keras.optimizers.Adam(lr=.001), loss='categorical_crossentropy', metrics=['accuracy'])\n","metadata":{"trusted":true},"execution_count":52,"outputs":[]},{"cell_type":"code","source":"model.fit(train_batches, steps_per_epoch=len(X_train) //bs, validation_data=test_batches,\n validation_steps=len(X_test)//bs, epochs=50, verbose=1)","metadata":{"trusted":true},"execution_count":53,"outputs":[{"name":"stdout","text":"Epoch 1/50\n2010/2010 [==============================] - 70s 34ms/step - loss: 1.2056 - accuracy: 0.5051 - val_loss: 0.8084 - val_accuracy: 0.6569\nEpoch 2/50\n2010/2010 [==============================] - 70s 35ms/step - loss: 0.7871 - accuracy: 0.6734 - val_loss: 0.7191 - val_accuracy: 0.7002\nEpoch 3/50\n2010/2010 [==============================] - 70s 35ms/step - loss: 0.7037 - accuracy: 0.6996 - val_loss: 0.6378 - val_accuracy: 0.7267\nEpoch 4/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.6519 - accuracy: 0.7219 - val_loss: 0.6195 - val_accuracy: 0.7340\nEpoch 5/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.6140 - accuracy: 0.7367 - val_loss: 0.5942 - val_accuracy: 0.7454\nEpoch 6/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5821 - accuracy: 0.7465 - val_loss: 0.5565 - val_accuracy: 0.7611\nEpoch 7/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5635 - accuracy: 0.7582 - val_loss: 0.5669 - val_accuracy: 0.7526\nEpoch 8/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5342 - accuracy: 0.7687 - val_loss: 0.5109 - val_accuracy: 0.7795\nEpoch 9/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5278 - accuracy: 0.7753 - val_loss: 0.4961 - val_accuracy: 0.7882\nEpoch 10/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.5038 - accuracy: 0.7849 - val_loss: 0.4873 - val_accuracy: 0.7864\nEpoch 11/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4857 - accuracy: 0.7897 - val_loss: 0.4914 - val_accuracy: 0.7907\nEpoch 12/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4762 - accuracy: 0.7972 - val_loss: 0.4586 - val_accuracy: 0.8061\nEpoch 13/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4682 - accuracy: 0.7993 - val_loss: 0.4494 - val_accuracy: 0.8093\nEpoch 14/50\n2010/2010 [==============================] - 69s 35ms/step - loss: 0.4526 - accuracy: 0.8085 - val_loss: 0.4471 - val_accuracy: 0.8103\nEpoch 15/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4373 - accuracy: 0.8157 - val_loss: 0.4410 - val_accuracy: 0.8147\nEpoch 16/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4424 - accuracy: 0.8130 - val_loss: 0.4291 - val_accuracy: 0.8192\nEpoch 17/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4280 - accuracy: 0.8202 - val_loss: 0.4143 - val_accuracy: 0.8266\nEpoch 18/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4135 - accuracy: 0.8256 - val_loss: 0.4090 - val_accuracy: 0.8291\nEpoch 19/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4122 - accuracy: 0.8284 - val_loss: 0.4418 - val_accuracy: 0.8146\nEpoch 20/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4004 - accuracy: 0.8351 - val_loss: 0.4156 - val_accuracy: 0.8287\nEpoch 21/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.4052 - accuracy: 0.8315 - val_loss: 0.4141 - val_accuracy: 0.8230\nEpoch 22/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3974 - accuracy: 0.8329 - val_loss: 0.4012 - val_accuracy: 0.8303\nEpoch 23/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3846 - accuracy: 0.8404 - val_loss: 0.3917 - val_accuracy: 0.8396\nEpoch 24/50\n2010/2010 [==============================] - 69s 35ms/step - loss: 0.3826 - accuracy: 0.8387 - val_loss: 0.3786 - val_accuracy: 0.8424\nEpoch 25/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3818 - accuracy: 0.8442 - val_loss: 0.4114 - val_accuracy: 0.8343\nEpoch 26/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3759 - accuracy: 0.8447 - val_loss: 0.3923 - val_accuracy: 0.8415\nEpoch 27/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3647 - accuracy: 0.8513 - val_loss: 0.3647 - val_accuracy: 0.8503\nEpoch 28/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3660 - accuracy: 0.8514 - val_loss: 0.3669 - val_accuracy: 0.8497\nEpoch 29/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3679 - accuracy: 0.8491 - val_loss: 0.4546 - val_accuracy: 0.8173\nEpoch 30/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3585 - accuracy: 0.8520 - val_loss: 0.3663 - val_accuracy: 0.8537\nEpoch 31/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3578 - accuracy: 0.8546 - val_loss: 0.3515 - val_accuracy: 0.8589\nEpoch 32/50\n2010/2010 [==============================] - 69s 35ms/step - loss: 0.3536 - accuracy: 0.8578 - val_loss: 0.3457 - val_accuracy: 0.8617\nEpoch 34/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3457 - accuracy: 0.8625 - val_loss: 0.3513 - val_accuracy: 0.8612\nEpoch 35/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3424 - accuracy: 0.8621 - val_loss: 0.3465 - val_accuracy: 0.8616\nEpoch 36/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3366 - accuracy: 0.8652 - val_loss: 0.3496 - val_accuracy: 0.8611\nEpoch 37/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3340 - accuracy: 0.8677 - val_loss: 0.3391 - val_accuracy: 0.8610\nEpoch 38/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3225 - accuracy: 0.8711 - val_loss: 0.3404 - val_accuracy: 0.8638\nEpoch 39/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3287 - accuracy: 0.8696 - val_loss: 0.3299 - val_accuracy: 0.8664\nEpoch 40/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3209 - accuracy: 0.8720 - val_loss: 0.3276 - val_accuracy: 0.8696\nEpoch 41/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3225 - accuracy: 0.8738 - val_loss: 0.3107 - val_accuracy: 0.8750\nEpoch 42/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3241 - accuracy: 0.8717 - val_loss: 0.3452 - val_accuracy: 0.8612\nEpoch 43/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3176 - accuracy: 0.8751 - val_loss: 0.3208 - val_accuracy: 0.8718\nEpoch 44/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3154 - accuracy: 0.8771 - val_loss: 0.3269 - val_accuracy: 0.8736\nEpoch 45/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3003 - accuracy: 0.8816 - val_loss: 0.3530 - val_accuracy: 0.8668\nEpoch 46/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3067 - accuracy: 0.8808 - val_loss: 0.3158 - val_accuracy: 0.8765\nEpoch 47/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3054 - accuracy: 0.8801 - val_loss: 0.3255 - val_accuracy: 0.8705\nEpoch 48/50\n2010/2010 [==============================] - 68s 34ms/step - loss: 0.3001 - accuracy: 0.8827 - val_loss: 0.3228 - val_accuracy: 0.8724\nEpoch 49/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.2991 - accuracy: 0.8864 - val_loss: 0.3455 - val_accuracy: 0.8645\nEpoch 50/50\n2010/2010 [==============================] - 69s 34ms/step - loss: 0.3019 - accuracy: 0.8823 - val_loss: 0.3021 - val_accuracy: 0.8809\n","output_type":"stream"},{"execution_count":53,"output_type":"execute_result","data":{"text/plain":"<tensorflow.python.keras.callbacks.History at 0x7fe3f204c550>"},"metadata":{}}]},{"cell_type":"markdown","source":"### **Predictions**","metadata":{}},{"cell_type":"code","source":"#predicting outputs for test dataset\n\ndatagen.fit(X_test)\npredictions= model.predict(X_test)\npredictions[:5]\n","metadata":{"trusted":true},"execution_count":54,"outputs":[{"execution_count":54,"output_type":"execute_result","data":{"text/plain":"array([[1.2441468e-13, 5.3811799e-11, 9.5440066e-07, 4.0529411e-08,\n 4.4220947e-06, 9.9999464e-01],\n [1.8547224e-13, 6.2210410e-11, 1.1664010e-06, 2.5988212e-08,\n 2.0647996e-05, 9.9997818e-01],\n [1.8294052e-13, 8.4191298e-10, 7.5464533e-07, 6.3542807e-06,\n 8.8500065e-06, 9.9998403e-01],\n [1.4470559e-13, 6.4180772e-10, 9.2504746e-07, 2.3590935e-06,\n 1.1521787e-05, 9.9998510e-01],\n [7.8577166e-14, 1.1962767e-10, 7.4712875e-07, 1.8806071e-07,\n 7.9157680e-06, 9.9999118e-01]], dtype=float32)"},"metadata":{}}]},{"cell_type":"code","source":"y_pred=[]\nfor i in range(len(predictions)):\n y_pred.append(np.argmax(predictions[i]))\n \ny_test2=[]\nfor i in range(len(y_test)):\n y_test2.append(np.argmax(y_test.iloc[i,:]))\n ","metadata":{"trusted":true},"execution_count":55,"outputs":[]},{"cell_type":"code","source":"labels=np.array(['Color','Cut','No Defect','Hole','Metal_Contamination','Thread'])\n\n# # 0='Color'\n# # 1='Cut'\n# # 2='No Defect'\n# # 3='Hole'\n# # 4='Metal_Contamination'\n# # 5='Thread'\n\n# #rows=>true\n# #column=>predicted\n\n\nconfusion_matrix(y_test2, y_pred, labels=[0,1,2,3,4,5])\n\n#diagonal values representing the correct predicitions","metadata":{"trusted":true},"execution_count":59,"outputs":[]},{"cell_type":"markdown","source":"### **Sample Testing**","metadata":{}},{"cell_type":"code","source":"i=1000\n\nfig = plt.figure()\nax = fig.add_subplot(111)\nax.set_title(\"y_pred = \"+str(labels[y_pred[i]])+\"\\n\"+\"y_true = \"+str(labels[y_test2[i]]))\nplt.imshow(X_test[i])\n\nif(y_pred[i]!=y_test2[i]):\n print(\"WRONG PREDICTION\")\nelse:\n print(\"PREDICTED ACCURATELY\")\n","metadata":{"trusted":true},"execution_count":61,"outputs":[{"name":"stdout","text":"PREDICTED ACCURATELY\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAEXCAYAAABrgzLrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOBklEQVR4nO29aZRsV3Um+O24MeY8vnyj9CQhJEvGCErGuD2AwdhAuwuWl8vLLrsbl3HRg11lt11lhKtWr65eZRfuH+WiFl6waA/IXZTBhY2haU80BpcnBiEEmtD83tObMl8OkZkxT6d/RGTsb++XkS+lp4wUivOtlStPxDlx7rnn3nPv3mfv/W0JISAiIuKlj9RhDyAiImI4iIs9ImJEEBd7RMSIIC72iIgRQVzsEREjgrjYIyJGBHGxjxBE5PMi8jNDPN7rReT8sI63y/GHer4vdsTFHvG8ISJ/KiKl3l9TRBr0+YOHPb4Ii/RhDyDi+UFE0iGE1mGOIYTwFhrPhwGcDyH8a/ru9c+lPxFJQgjtF2p8ERbxzX4AEJF/KSJ/6L77jyLyvmv87vMi8u9E5EsisiUinxSRuV7daREJIvJOETkH4C973/+0iDwqIhsi8uciciP19yYR+YaIbIrI+wHIC3+214aI/JKIrIjIJRH5J/T9h0XkAyLyJyJSBvB9InJcRP5QRK6IyDMi8s+p/WtE5O9FpNjr6/0ikqX6F8X5vlgRF/vB4D8BeLOIzADdtzCAHwPwe/v47f8A4KcBHAPQAvAfXf3rAHwLgB8UkbcB+BUAPwxgEcBfA/j93jEXAPwRgH8NYAHAUwC+a9BBReQf9xbRoL8b9nfqV+EogGkAJwC8E8Bvisgs1f9jAL8KYBLA3wH4fwB8rdf+jQB+QUR+sNe2DeB/7Z3Pd/bq/5fnc74jiRBC/DuAPwB/CuCf9so/BOCRffzm8wDeS5/vANAAkAA4DSAAuNkd4530OQWgAuBGdB8aX6A6AXAewM8c0Pl+GMC/dd+9HkAVQJq+WwHwWvrN71HddwA45/p4D4DfHXDMXwDwiV55qOf7zfgX3+wHh3sB/GSv/JMA/u99/u5ZKp8FkEH3TbVb/Y0A3rfz9gWwju5NfgLAcW4buiuAfzssrAW7t1ABMEGf/fkcZ4kCXcllCQBE5OUi8mkRuSwiWwB+DTo3L5bzfdEiLvaDwx8D+DYR+VZ03+wf2efvTlH5BgBNAKv0HYcpPgvgfwwhzNBfIYTwdwAucV8iIq5vAxH5CdpJ3+3v+Yrx14I/n2fc+UyGEN7aq/8AgG8AuDWEMIXug2BHL39O5zuKiIv9gBBCqAH4OID/DOBLIYRz+/zpT4rIHSIyBuD/APDxMHiH+oMA3iMidwKAiEyLyD/q1f2/AO4UkR/u7Rn8c3T150Hj/UgIYWKPv/2O/3rwJQDbIvJuESmISCIi3yoi396rnwSwBaAkIrcD+J/pt8/pfEcRcbEfLO4F8ArsX4RHr+2HAVwGkEf3pt0VIYRPAPh1AB/tibUPAXhLr24VwD8C8F4AawBuBfC3z/kMhojeQ+2HANwF4Bl0JZrfQneDDwD+BbobetsA/i8AH6PfftOd77Ahvc2MiANAT/T9BoCjIYStfbT/PID/FEL4rYMeW8ToIb7ZDwgikgLwiwA+up+FHhFx0IgedAcAERkHsIzubvqbXV1pwM/eMuD7iIgXBFGMj4gYEUQxPiJiRBAXe8SBQUTOiMj3H9Kxf0pE/uYwjv1iRVzsL0LIN0EctnPCqYpIh51wDnt8EVcjLvZvQvScRg4V7ISD7ubiRXbCea79vRjO6aWOuNgPEM8n1FVEfhXA9wB4f+8t+f7e90FEflZEngDwBIW8pum3RiLYK/x1iLhLRL7eCzv9mIjke2N7vYic73nLXQbwuyKSEpF7ROQpEVkTkT+QXohv7zf/pecXvyki/3XHc7BXNy8in5JuaPCXANwy/FN9cSMu9oPFcw51DSH8K3RDVX+u95b8Oap+O7qRYXdc68B7hb8OaL9XeOs91zreHvhRdM2PNwH4NgA/RXVHAcyhGwDzLgD/DN1zfB26gS0bAH6T2v8pup5xRwDcDxtv8JsAauiGBv907y+Ccdhhdy/1Pzz/UNefcd8FAG+gz6d736V3+x32CH89gHN8PbosNf77MwB+kj7/nwA+SL9pAMhT/aMA3kifj6EbCJTepe+Z3vlPoxsC3ARwO9X/GoC/Oezr/2L6i2/2g8fzDXXdDc8lZHOv8Ndh4jKVfXjrldANGNrBjQA+QWN+FF3CiqVeUMx7eyL+FroPEqAb4rqIroOYDw+OIMTFfvD4Yzz3UNdBnk78fbn3f4y+4yivvcJfr8I1wlt/ZR9jfj7w5/ksgLe4MedDCBfQDYB5G4DvR/dtfnpn6ACuoMvq48ODIwhxsR8wwvMLdV0GcPM1+r0C4AK6IbGJiPw07KbUXuGvu/W3V3jrr+1jzC8EPgjgV3c2EkVksbf3AHTDW+voRrSNoSum74y9jS4l1f8uImMicgeAdwxpzN80iIt9OHiuoa7vA/AjvV10z0HH+KcA/iW6C+BOdDncAOwd/voixvsAfArAX4jINoAvoLshCXQ3Nc+i+4B7pFfH+Dl0VYTL6IYI/+4QxvtNhegbPwQ811DXiIiDQHyzHzBiqGvEiwXRa+kA8XxDXUMIf33QY4sYPUQxPiJiRHBdYryIvFlEHhORJ6/TyyoiIuKA8bzf7CKSAHgcwJvQJeP/MoAfDyE8Mug3ycR4SM/N7V7JiXrckKS9e13Kc652qK5jq6Qdrlnu9j94PkJan41BaMDukRkSoXa+joabuLqMHrtQaPTL0+mqaVdIaV0W9kSbNJhyJ9cvV9pZ064V6FzcIFsdrWu16eQ67mRa+jlp2iozLPpZxymOmbKec6pqOwktopvf6z6layGJm9S0fu5kqZyx58LXIrgu+PpeNQq+9gmdS2KvSzatN2si7pq19YCNFh28aW8s2cdSbW6so10u75r26np09tcAeDKE8DQAiMhH0XV6GLjY03NzOPbLP797JZ2XNO1YM9v6OVXXcnbb9V/R2ciW7Mxkt3SyM1t6U6W3aqadtNxTgtCaVf+Vdl4vSqtg747mBC2WvD2XxqR+bkybKlSP6839ijvVHP/WxQdNu7vyWnfSPQiWaVF/oapm9/u2Tpt2G3U9l4Z76qxWxrXdppZb2xnTLr2ht8/4BXuefC3aOa2rLZhmWPqyXovxBy+auvbylX45NBsYBMnpQy01NWUrFzXTVPUGnfDSMXvrN6Z1jE0Xs9ca13MJ7sHezlPdlJ7L1GzFtDs1U+yXJzJ1U3e5rGN+dkXHK8s5047vfb/wd57X59//GxiE6xHjT8C6J57HLq6YIvIuEblPRO5rl2KYc0TEYeHAd+NDCB8C8CEAyN10MmDay3s7DemptWbfINkiiYv0UEzq9vHG4n6zYN80KRKJUg19kyU1OwWpLbWOhap962cq9Pk4PYGdKpAiUUym/Ftfx8VvBQAYWyr3yzdPaBKYW3OXTbu5RMdxtjVm6s40F/vlxyrqPXuuNGvapUmU9G/2akPnv1Wma9EeLHHxmxywKlb5iJazG6YZMiWVZkLZvg0RSMpiUT1rVZLUhEofmLPiEktj9Wk9z7Z9aSKp6fg7WSfi0+H875Ci827pPdZs2TldKau4sBwmTV1xS8fYqdO9k3Wvb1KjUs8jWff1vNkvwPoin+x9FxER8SLE9Sz2LwO4VURukm6O7B9D19UxIiLiRYjnLcaHEFoi8nMA/hzdeOLfCSE8/IKNLCIi4gXFdensIYQ/AfAn+22fSjoYm+wq3bWq1bvCin7OX7ECB+uDrE/xDirgTCZO3WmNky5EddkNq5ejrru+YdN5tzZ0vyHTUqW0M2N1sNSUKnbtnFXyhPTe5ozd+b9tYa1fvmPM7kwzzjRn+uX1tt06frymevqDG8f1WG23d0CTUG3aPZLSht0H2EGmaPvIbWrZWZNQWSLzI+m1qZa9ZtKhi7Fg9xVSWRpXY8BeDwCZ1DnoFOx91c7pmPn+SNzmfmuM7YO2LtXQuk56sP1LMvpDb86sN3WplUp5+0PqMsnTfZW2A2mz6dCb5Xrz6q0FjOgbHxExIoiLPSJiRHBogTCdNStu5Tb0uZNYnwOUiBM1kJdSuuJEQpL0vHddqkmiZIPKFSvPdbbUUye0rRgVKmoaEvLukqYVMdNtNf8kk1ZEbo7rlKfnrQrxqhl1WziduYJBKHbIIca5e321eMo3BwBM5Wq7fg8Aq9vj9gvZ3ZzEpjbAzun2TbaLQH0ImYzYxAUA5eOq5iQL1uMmXVVvy6Q6KEU9kJT0GrbH7Xy3czp+Ns2K686aT516yK9E7y1JXo8JifFtZ6bspGkO0vbgHfJYZM/JlPOcKWdIPdx05scdh5s9vOzimz0iYkQQF3tExIggLvaIiBHBUHX2TiuF8lpX38xU7HOmOUkBBW5UbMUQchPMFm27dDXs2g4AcluqT+VXKHhkfdM25OiqlAseIjNRaJCu37G6fYrcOUMyY+oas9rH8Xl77BPkSzqT6P5AsW1NYQkpZl8rWxLVeksn78S49n/7hHW5/ezybf1ydduZB7dU72WzU8aFNlSOal19wU54Utl9D6Yx4+ZUtB0HzABAmyxULSr7/ZikVuiXs1s+QoQORZfJR98FutYdqw6jXdBOWuP2WkuB3H2pKnGuroWs7ut4s1yDAlyqFb0WHWemDFUddHbd7tXs6Ox+L8K0GVwVERHxUkJc7BERI4Lhmt46Aql1ny+dTLiqbhDYxJYp8/ee5UKLXhXIVFTGSjZJjPeeWZ3B8ewGbbbjuLGTSHhV3PQRFftumlozdUfS6rG33VG5lU1tAPD1ioruDxWPm7oNEmm/Z/HJfnmzVTDtVrbU6yxZdWYcksjT5cHiLXuTJU4tY3NVY1bnqlWw7WqLFMnVsNezOUWek+M034ltJxUSad2lyKyT6bBEx3KXnbkFvKjO5xKy7v4g06TkBsvQHElYLtprIVUaPxOC1JypkzRHb3beUZW8J6P5/eCqiIiIlxLiYo+IGBEMVYyXDpAud58vXkRhsV7cLmSW4lFYxGSvpG6lFj2xBXt7SZN2UNt7bF92/M4uBTpQnec9q9y+1C+XT9gxjs/rLvstY9ZLbjHRE+Ud96fa1sPtybISVJxbt8Ej0+OqojxOrBEXyjN2jKuqGmQ941PYvdyxzmnG0c6LlUx5RxoJsqfKph0bPxLH25ZLdpdJt1ygjhGt3SVr36KmgAbRaokLJAnjek+knTjeJkIJNNz7kfrpcJBTyg6ktqqie3rb7aTz/NM0pktuHRANm1dhk54K5NUTc5zBVRERES8lxMUeETEiiIs9ImJEMFydvQXkVnt6iFO3GzNaTrsALUOux+qZHz3rkFWr06TL1AkRVCDrFFFWItsu/I5g9PRbbKRZ8VZVWGunrUJ8elLd0F4z9pSpuzWj+vZlIptYbVpyjDObFA3m9NqECPOXK0pRfObyvGnHNNDsJefBBBWOeh5ZJnXw08gKPe3H5LNWqVyaVEX05klrijyZU4/CtabuWzwzZ8/l0WUl7BAXKcbHG5sj02bNeg0yP/543l6zck1PvLJhzWZsKmPyyXbRThZ7vGVKg+c7Iauw9wYsrOteQrrqvDab3c9J021acJuBNRERES8pxMUeETEiGL7prSemOMnUZLvwHGAsnrPofpUpiCR1b4JI1egLSgkk4vjAGM4sF8hkl5pRl6vKSXsym7fqCSwdLZq6Ny19o1++NWNJ1HOi4yqSveqhbesl1ySRc2bMZoQ5PqFy90OXj/XLctmKrUxE4fnrcxvMH6ffe7GSs+60XTql7RuI572unTQcn/pYenCmF06T9MpxzYJzKr9u2n3f/OP98nLTZoS5VNPr9NUVzWHSccEoHJySSex1H8vpvVMfszcdc8FxoIrn68uvsmecNwtrOU0m42zJLoT8KhFb1G3gUT+Qx5uL+TgDayIiIl5SiIs9ImJEEBd7RMSIYKg6e0gBO6nJXBCWIZKEc6VlEgMmHfAEBJw2uO3ydbUn1BSSqmiHsuG44dmk5txghaPbpjVqrHTCDiRZVD36NUfOmrrXTTzaL8+5/h9qqF59f/V0v7xet+6hzKlxesrqr+e21X22dlnNVROX7HOd5y7Zcvor1RkuD78P0tJKn1uPXTs5912tbvc3HijrOc/OWnaMMxNqYrxz+lK//IqxZ027o2ndp3jd+GOm7lNbd/XLy1N67OWSHUeNlkKjZa9nmnT4fN5OQqWl45cG6+U+V7cWfZ62DLm+JhT5l1u1+xnpdXU1lpqtC/nu/S3twWFv8c0eETEiuOZiF5HfEZEVEXmIvpsTkc+IyBO9/7N79REREXH42I8Y/2EA7wfwe/TdPQA+G0J4r4jc0/v87mt1FBKg1ZMsm1PO86vKKXbcD0naZZp070GXooAq30f5qIpbYySOZ3LWlJLaIm74lIuMImKL1hKZ3o5akW12Wgdy25jlfjuV1v4/Vz1q6r5GpBRPUMTaZt2aB2+asZ5mjMsbKp6On6XUR+6x7rn5GdyWzUQpl5q6Nq0N6/ODiRaYcAQutVejqddlvWbVms4SmRizqhotODK8Dr2zfDqsl+dV/G/ParszeeuFxymtt2p2vtlcGJxlKxDxRKZMacGdqM7EH/XcYBE/V1SVIbNhzaq4oiqbN7CJTO4+QMI13+whhP8KYN19/TYA9/bK9wJ4+7X6iYiIOFw8X519KYSw88i8DGBpUEMReZeI3Cci97XL5UHNIiIiDhjXvRsfQgjiow9s/YcAfAgA8idPhb63luedILHH82gZKmlybvLUxhzQn/bkFbRzXF1U0b01ZkXHzLSKlelNK+uGtD4bN29Wc0Jt0Xpcncqr+LXiPLr+snJzv/xw5YSpe2JbRffVqu6kT7vUTccLuvu83bQiZ2tFx5Whq3tVcBEzYVvnOpPhNE2SpL8ubdqBb0zZ+ebdaL62wV939px0pCU14m1bq+l8fLlzo2k3n9OXyM2FVVP3stxyv3wbifSJO5lqW49VrNo5LZH1pu08AFPEf8deid5y0aY53mseAxGySNmK8YFSjiHjsiD3vUIHB9k83zf7sogcA4De/5Xn2U9ERMSQ8HwX+6cAvKNXfgeAT74ww4mIiDgo7Mf09vsA/h7AbSJyXkTeCeC9AN4kIk8A+P7e54iIiBcxrqmzhxB+fEDVG5/rwUIKaOe6up00rW6xV0A/P5JYT89uumitrcH85GxOYh2yOWF1sJDQOJypqTmtel1liXSrOevNVG1pu2cq1sTT7Ojxnq1a94TNhuqGaSKhODZmvfxePX6mX/6dc99t6lgp5p2UlDO1CZlosi4D1qCUSS1vMqI6TzjZmOFQRSr618vg7R7Uy6qXXs6oSbE14bwB6ZwnnE0xR8rzRkv1/rYbyEJW9f4zyZypy2QGk5K2eK6oWcoF8w3yAgUcOSoTfM5YMyLr8JKzOntnh4TFpywjRA+6iIgRQVzsEREjguGmfwIQeimDPCc2S1XeNMFmDE4RlC8OFq/EieCcIdSI9K5dY1IrWwVrgmHxi1MTpRxHOPPAbTVsxM8ZEuPHExfMQOLodl3FtBP5omn3V8Xb++ULqzOmLr9KXGoXKfuo4+jg4Iv8mptHujTbJ/WkPU8/qwKex47FekOO4T3QWEXbsipVm0gvtoIGA+Uy1j1tNqdeiUdzVieZS1TvYy6/M069msqobfIV85dM3WNFNYmWG9bjcj2vE9ucYk6+wR6FV3mIErJFathyaaiWaMwuTVlrvnufhWeiGB8RMfKIiz0iYkQQF3tExIhg6Dp7PzWzt+IwmYIzEzHRYUJun83xwc+qVn6w7sL6aztr+2A9tOUIGVrEIdGcUJ0p60wz1WZm1zIAzBVUv4TjYec0ysx3/rdXbjbtljdV90w9bfcExkhPp+2Bq/ZB2NxTeHbb1NVO6DjaedZDbR9E636VHsqEosKuo1YtR3Zj8DUMlEa5Qym9S1Xr31sZ04nMi9XnX55Vd9lLTTV1ekKQOTK93ThmowpbtLFwpWbNYes5dYcOTEayhyW5cMVuXGSIuJP3mlIV6+PcGdMbt37UkW8sdC9OJzN4PuObPSJiRBAXe0TEiGC4YnyHoqH2MMGkXcw+i+5CvNieZ45FydaYq2MJi47dcPz1xoPOoV0gEXlWZdNCzprQ6k0dSKlsbV4VMt2c61gPukadovGaOuBSxYqtnfMqgk4sD059zecijk984qyqEykXXZWuqGrAXmHipoZVA3HWu06OxsEZknxKYe7Tp1um+U4KlFI5bQ+2UdPxPlo5Zurm0mp6m6Ab6WWTNl12im4KbgcAC1kXXkmQjE5C/grPt23H5+0sruZ+bI3rvZP23nB0PZtTVh/aurG7gHyKLjOGwVUREREvJcTFHhExIhh++qeeZ9XVu8ODf8dBBOyp1Zh2wRe0e3sVSRd9zlJcSa7omjHHnXsUthvsFUYi96wLzOjo53bT1m0v625uasyl8KG0Tsiy15k9z9yatstue0/B3X82/bSVn9PLRW1XsgxC0p7BbvAkF/VZJq+wdTwqFmGzjraakrOiMWfF8zRRck9PqGg9U7BqR4vmm0koAOD+khJd3FxQ0f1I1logODDmEqcUBlCmSb1lzIr/TxxZ7JeXl5SwaeYbpplRc/Kb9jwzFMDF6lZn2loM2mR1KN5il25tvvu7vbzz4ps9ImJEEBd7RMSIIC72iIgRwXBNbymg09NFDdGgg/fUGuQN13Y6ZHOCzHJjdlOgcJGIAcljKbdt27E5z5v2muPkTZboc7KMadMuOao6Zag7lzEmz3SP2g4ReoQ2NbxiT7SwQiapq4g1tZxf1w+FM0V7rGXVPTn9NADU5/V4xmtwHLbdkvafWXdEjIMCEt1eCtHoozVmJ6S5peOoZrVDn5X4phllOveRhFcaukeyTicwl7H7FFPEyPkthYum7lFoyuyUO4G7FzWV9KdPUC6BDevZOHlO77OUu2bpim5qSFPPk1OWAcDqndpn6QYXEVfo/S4dUzZHRIw84mKPiBgRDDeLK9STLeSduEHuWZ0pL5qSZxJzkDsJ2aTcqdjnWO2Iij3pqtalXbZNNpFwRk3ABeuQGS6z5VIaJWQrzLrzzOo4Os4sl2zoAZKK6jLjVqpEflP78J5rmW2dhPwFtTGGi8umneRVRA6TVj5vkjjNHlk+ZZcQuUTiyCs4+IX56LyHF5tBJ855b0AybxZURN5Ysie9vaji7dlJa5arkscik4ocnbSmt+PjSnqRcZP6mvGntP/Goqn7+rZy/y/Map8rx+yJZkqkRlbsPRFIJexwboLTjr/+RgqSWbC26s5673idwepxfLNHRIwI4mKPiBgRxMUeETEiGK7pTZRw0hsImjOkJ2WtbpgqsS47OLKIdeqr+cm1WDnOZAG2YX6dTCQu7a7JgVbBYJBNrb5g9T/ZpnNx5sfcOu8D0Jg27Immq/o5qdm67BUyKa0W9bg+ZC0zODwqVySTWknbtfeIJORoO388nrfWhDM7UapuNon63wnposGZ+Rpt1dnX1qyem9DeDY/xqSVrzizN6XkWEutafDKrZBZtx0pRopTTzPUvs9YE2JjWMTY27T2Xaumx65QGe+sW0wytGbohS3bpZkrd3/k1YY4zuCoiIuKlhP2kfzolIp8TkUdE5GER+fne93Mi8hkReaL3f/ZafUVERBwe9iPGtwD8UgjhfhGZBPAVEfkMgJ8C8NkQwntF5B4A9wB49549pQLaPe42aVtxKDOrpoTJCWs+aS6o2La9TmaiuntWEZHAVSaIhKKJSFpsFq04y1FZSdOLnCQ+kwjOnnW+LtW0U9wcJxXCE3hQN2yeyZSsbMaie6ZoiRakQiYZJj9wHPjG9JZyJsAG9U+idc1andAh8+lV0iNPMnUfnLhfI5XHE44MioRMOy4JzgnQcabIdJnVBC3X6tbDbZkm/7G01d/aVHe2ZFNDPbsxo+1IJUwlzmybHWx+LB/R+5tF99a0Dw2le6dmVZn+eV6PGB9CuBRCuL9X3gbwKIATAN4G4N5es3sBvP1afUVERBwenpPOLiKnAbwKwBcBLIUQdlJnXAawNOA37xKR+0TkvraLm46IiBge9r3YRWQCwB8C+IUQgkkrGkIIuHqDfafuQyGEu0MIdycT47s1iYiIGAL2ZXoTkQy6C/0jIYQ/6n29LCLHQgiXROQYgJVrdpQEJFNdk0TbRYM1y8S17njYp8dVhz92o7oksr4EWJLGVGKVl2adcpZVtdxwrrms16Vag912uc6zxfAz1BNY8l5F05mhWqTPM7e9J4tkPZ2jpDyE9fRg+wjEQd6ZsPp8q6Dz2CH90kcZGv275fZI5tR8FVi/dHnxWse1XWvThjvmV/R3zFHvI/14j6R80g7DmARJ986t2fFWsnpyZzo2D9zKtkbONRp2yXTO6AuMj9VxUZdC8+j3JmoL+rvmEZ2PzIQ133XaOh9hy5neesvCu08z9rMbLwB+G8CjIYR/T1WfAvCOXvkdAD55rb4iIiIOD/t5s38XgP8ewIMi8kDvu18B8F4AfyAi7wRwFsCPHsgIIyIiXhBcc7GHEP4Gg5PZvPH5Hnh23tpP2kQauLVhifYSEslbJMpkHH848643a/bUjAMZS58L1luqQswZ0rKCT26LxpEfLBSxmOkoyBFoID7NMadMqpPXQueSbdcuUCSX5ydv0Zy0KcJuzhLktyZVbG1OWfG5PqNz3Jwks1bezncgU2dStWqZLKvc2poaLFsako5x265J6bN5rlKOd51VKk4VDdhIvTpZzbJF771IkX6O679KaZnbE84jksT1/GWdg5bzjmwTj/7WLU49pAi2GxdVX5nJWRP0Q+eVRCN/xd2bmz1SmOsR4yMiIl4aiIs9ImJEMNxAmCD9XfjsjJU3jk8oj1hq3oo5T2/o7miLvJQ6jk89sEjbcM8x8rZjkT5MWG+p7O1qVWxsO265Abx5nkSDPbquEuOpbdMmBB3oMVY6bg/QSasIPvmUk2mbej5hQtWh+qJVjepzjuiP66aID36SvLZm7LGM4922mwSCCWLJWL0jkyeevILtfyuQqZbUK55fwM5b25GitAt6PCaJYM86wPL6pd01qxzRtvWWvxZ8LJorp16FBT23ySkrnt80q/f+6QkNunm0eNT2QVyEY8s+aKj3eTAFXXyzR0SMCuJij4gYEcTFHhExIhgyeUVAKt1VZry+nU9Ud7tj8pKpe8vCQ/3yn6/d2S9vusilOqW7PXfZRicJmYbY82tnPDvgyKXaTdYs18mp3pglj67CquPwpmizllWVLfZIW806X2PKzRWRXIS0fV6HApnUFnVToHLU6ugd8uzzRB+cQ685q3sr2Zzd3+jQXLWdyt7JsK5M+vCaHQdzbibuWmTGVc9tGS88O2COVBy76Exea3pPNKfYRGfHO/20Hqs2b8eYISuxdLxJjT5QVW3BnsvMjMaFvGxu1dQdzes+UYsYQS5u2QR648/SvpPzquznVtjj9R3f7BERI4K42CMiRgRDFeNTqYBCTzSbzVvzA/N+tZ1cmZBM+y9O/Fm//MXKy0y7xyrWVME421rQD2yG22O8ybgVWxu36OfWJfWquopLbpNNMC4QhgNoTOwgrFhPP2u79Ff1GTKNzTlSimmVK8skujcmnZmS7I8Na2E04m7IkZecc9drtXZXjQAgRdxyPAWdnNNd6FrUy1bnYT7+NEnx4rgB2fOQTWiA5RHkQKZ01barz+pSSDtevxyNI2U1OwRaQaxu+flYHFcx/nhh09TNkk7xRPlIv1y6bG2zE7QsqguOD3CHNj6mbI6IiIiLPSJiRBAXe0TEiGCoOnunnUK52DWXlcaszl4mFr7lhjU5zKVV32mSv+lbJx427XKkUKWcv2I+rXWXyKRR2rY6b7PJyqHVu3IFVQBrS6ozbYlldRi/QDnQfHpeOu3Cqosio0NzuujGpH0ms162dqdlL2SLJvfnSQ1aZLVk0gzAcvgnY3rO9bo1SeVyOqeVgruVKOqQo8Hq886PlMabVO15pplIhMbvTYWsw1+lUye7l1sFRyBBxJdpe2uisEo8+i6qrjZNhCm05eDdsAt0/004v2jek/rCmdPaX83lEJwmcpMxt/fRa+rTne/SJCIi4qWOuNgjIkYEQxXjk4pg+oGu2HmxYz3cNmZUBjo2Y21SN+Y1Esin02X8g/yZfvloumjqbhu73C9fmpvpl58sWzL0p4saYcfpfgHrXVeYUFGs6rwBK0TcNnnGVKGwpuPPlJ0NiUk1iAfOR3nV5nUc1SXnATiun8fP6uX1XOUcHdaasH0UFtUUFMJg42ST+NjEs2hwO46c89Iniar+0rJIbsR4NyT+nTcxsomNf9dy3KcdUpuCG2QySYQp5cHnWT2ivytMWlGd1ciSI/P7/OVbdRwbVOe45xucqtpnPPc5FHZBfLNHRIwI4mKPiBgRDFWMT1cDFh7sMgOkK1aUWX+FDmUja7dU10nm2u7o7vnNaUt2cIx2W0+lr5i6mURF07vyZ/vlMwUrxj88dqJffrqyYOoeX9O2m5u09erokXm3mL3dAKCwSl5cjkAh1SGOuzES1RfsM7lO5B7taSv75i4SyQMZGvzubZu405I5K3LmMqpeCIm0rY7bHa7rAWTN6gkmo25Bx+g9CjOU0ZSz2AJWjGcRPF90qZVI2/K77A2af+auy696OXj343bHrG3rM3YOSqco6Om4sl6ccqpoiuTuc2WbFnFlQ10A09tEznLKsWjQtTDiPoijL5JXRERExMUeETEiiIs9ImJEMFzyinZAutRViCYuWLaDhNIzXZm1dpH1Jf38SE3z+5xOWw+6hYzqjaW2Vbzyop9nSHk7npw17V6Ru9Av/3nmTlNXaqqeVKnpsbx5qjmmSmSnZM+zTBsL3gzFTn+sp9etimf018JZax7kKKz6rHYo81Yvn5hQfXAqb+vGMzo/DSJTWC3Z6xI2dA6Spouqo3RTgXR97/2W1Iic0xFuDiL+8N8zEUXizFWFNRoHHTvr0mB30kzm4SLKMpRe6pg9geoNel8tLmxjEC6WNbRwvWJJV5qbpH+T92La3SBtymOQXXP7OCd740gPVtrjmz0iYkSwn1xveRH5koh8TUQeFpF/0/v+JhH5oog8KSIfE5HstfqKiIg4POxHjK8DeEMIodTL5vo3IvKnAH4RwG+EED4qIh8E8E4AH9iro5AW1Ba65hovwrKHV+asNSvcN32qX24t6fPpVHYNFuolt9axfTzR2J3Y4tW5Z83n2zIqtk5Ofs3UVcjzqdpS8dmLt81J8lzbtM9TJo0oH7EivhHBZ3YdLgCgsKJ9eH7y6hLxrC2pfDszaaM7xrPEY5618vPNE8qR9nDxmI53ywYNpUtkJso60ggS6zObg73wTJZY97ow5juaxrQTs1OU5mrqccdtX1exOGRInRDbRztPKa8m7DVrjuvnyjHnbTin88rq3IYT1bdL+rlVdCdKqodQiq22Sz+Wf0Lnv3bUmlwzha4YL6nrEONDFzuUe5neXwDwBgAf731/L4C3X6uviIiIw8O+dHYRSXoZXFcAfAbAUwCKIYQd74vzAE4M+O27ROQ+Ebmv2Sjv1iQiImII2NdiDyG0Qwh3ATgJ4DUAbt/vAUIIHwoh3B1CuDuTHb/2DyIiIg4Ez8n0FkIoisjnAHwngBkRSffe7icBXNj710Cq3sLYE119cP21S6auRgR67MoJAMXL6k74pdYN/fJ20+rlzC8/n7YpoR+uqOBRJ2XwSsumMj6V0bxbM4mVRI5li/3yYkH7rzSt+Wsbqp8FN8NsNvI5xaqLpG+xjro9OLdZy6rRaM6pq+vRaR2/J/hk3v6JtNXZn9xWt2CzH1Gy58lplL07LvGNIL+2hx5JFlLv6sr7OklNP4ytOGKSde0kvWXPRZqksxPvf8fx7Uub3IILVqfmXG+po3YeJwoU/UhRko2GvfDtNb1Xs1v22EwekpnVm6J50b4cG9PExV+wOvvO9QzX4y4rIosiMtMrFwC8CcCjAD4H4Ed6zd4B4JPX6isiIuLwsJ83+zEA94pIgu7D4Q9CCJ8WkUcAfFRE/i2ArwL47QMcZ0RExHXimos9hPB1AK/a5fun0dXf949UCmGiK+ImLtMwizIdl3aXvYIqGyoif7V6yjS7XFZuuTvnbAqpxayK3VtEwFZqOw46Iij/Ytny0jPpwJGcekud7wo+fXBKKU4ZDABNIsBoeM84MpuwiJy4KCxWBTx5RXpCG0/nnJ5AODVe7JfrHWsC3Kjp/BQv6Jxmtp34SaQXzC8PAKmm3lp8XtntAamGAaQd/z6njubfZTct6UdmQ89TGo4QhExsUuGwN3vrd1IqgleO2PNkM9exORvNlk20rkk8+qWiVTHTZeKed+dJmaSRormaOG355csUKTqWszfFzmmmrsf0FhER8dJAXOwRESOCoQbCtHMJSjd1d7/LS/Y54wkDDFjqIa6tZNXuDl9aVTFnZcnust90RL3tfujog/0yU1MDwJWWiq2Jc0/jtlVy90qnXPbRjIp2taxLmUQbrF705QiXzGXywnP0wI05/V1nwepD4wX93CTx/M4Zq9bMZ3S7/Ex13tStbmraIeaI67ggi/bEYD5Apndmlc17/PGOeys32OqQIS65dMWK6qkiWV5chtfOlOo8UuWB2EndvFlVl/Jx56FHQUSJc/1co5RV2+t6cZNte19xGqqOSw3VmtRJYdKLu+fPmXaPbakFq9yyFoOde/V8MviaxDd7RMSIIC72iIgRQVzsEREjguHq7Hlg4+VdXaYx6/Q/SuUbvPmgwUH7qgulXSoe1hObaWtSO5dWO9dfZZWn+9XTNurtsZrqRZeqNpdxlhSvGinStZadxhTp8OI8nYTSQOdyVvesr6j+Z+bDkTW053SDYycF9g7yRBZ5gsxrp/M2QpBJPJlYAQAa20RK0abUy86zMZnUcXgCRE6hlCmTSbHlrnt2cEQcm+UyW3pe6aL1YgulwTEXUtBx1U/oedbn7DUrn9Bx1I/aDaRF8kTcrNr7antF9zfSG9onk3IAQGOePPny9p7ITuo15DRR04k9z//uiEZhfmn7JlPX6u3PZFNRZ4+IGHnExR4RMSIYbhbXLFA51RUzwrjzdCJxES5oP11U0T27RUEJrovGjJaDMxM1iOPuqXXlg1+pWBPdFHmdrVWt/LxZVvNMh/jPm3U7jYHqUhkr+i6RB9ZGyfYfiMSgSXzwMua44cdU7GOOdwCYyuv4j+X1WNvOU5DTXj27MWPqkk3yfqN5TM1YlYHPMynbazYo+IW53vxnT2gyfllF2kyRvOS2rNje3rZBT4zUrIru7YKOcfuUNY1Vj+h1ykzbYJo6eQPWXCZbIRWT01DVF911Oa4el5OO86/Rpiy3bT3W2ZpNkdYhG/SN+XVTt+PdmYlifERERFzsEREjgrjYIyJGBEPV2VOZNsaOd/WrWtXlBmsSGaCLiEuzGYP0uoZVt9Ehc5XPv9ZpqF60eWZGy05RDOOq86RyzmxGfba3dPzScpzpzF0+bU+mTRzqLbc3AXKtnZpTvXTC6XhF3jtwnPWzOSWZrJJ5cKVuJ+vMpuqD1XVLjsgep2FOx5/P23OpEAHl1DlvQtudr915J4OzF48vOxLFLT1ealt19rDl+NkpF1uq4Ng8sjoH9Wk9uL93sKhzfJVJlIgoJsZsJOHWnJ5cs6Dtxmet2ezUTFGH5DablmnfqE5m3AuVGdNuJqN9LmVs9N0z1e4+VNNFMDLimz0iYkQQF3tExIhguOmfCJ4rK5DpLdVwkUsUJdScJN6zCZfCZ3pAjl8ACXk3TZzV/tNV59FFvPEN61iGxgyJi8ST7lMvtybI8ytjRVPma19tO7Mfie6vOKJRag0nmm0SJ/l0wYqV8znto0Uy81rd8plVGi6UjrGgIu3CnJq1yjWreuXPqAwu3jOOxPN2nlMr2UOxp1264tSmepPKOm/eqCd5Gse8ZQTZvlUv4taNevDacStKFwrkDejSSk+N6xx7Lr+EVLvamN5jPhLy4pZGU/rU120iNEkn+ru5fMW0Y+7EzbZVvc6Vuuft7xVGfLNHRIwI4mKPiBgRDF2M3xHfgxOVUls6lJTLCMqSSYc53RbtLjVn8GxvuuB+CppJ6sTzdd4RITSJGCJjn4WcFoizrFaOmWbo0K769LgV+3KJHm9p3nKMsYg4TvTOT60dN+2mx7TdDZMbpo5JKdaaKrpvN2ygCs9wftaqAkyPvLGpfbSv2J3uSdoQ9qQUzQlSyziuxG3aB6KITqr2WkitSe10TMHpgKlx9USs32iJODZu1fuqcouqAuNz9rpUy3q/5Ao2EKZN9+pm3c4Bzw+L/6yWegRnhclQMNORKVWbWCUDgAQ6yc9U7HnupCPz1hlGfLNHRIwI4mKPiBgRxMUeETEiGKrOnqQ6mO3psMz/DlhVzhMbBk4HTIQJWefp1KiqOSm9ZU0QTCbAZqKkbpXN3GX1zpKq3RPoTOqYk6aaUprjdhrrJ7XPfNqOkU0yExnrkZYmxffRDU0x7UkOFwqqyx3LW72/Tc9vNrd5UgMfLcdYvaDmKiZOzG+4aMQKcf07EooUnRqnZe44i9/YMnHPu1TMIA5/VCnqLe2iDKfVhFk5avdqavN0rcf0nMXNKevp3rNxk+axs2r3PgxpKOUL8HsTIH1eXCTk9ISe282TSjLC+zsAcKE20y+v1awptdpLQRaizh4REbHvxd5L2/xVEfl07/NNIvJFEXlSRD4mItlr9REREXF4eC5i/M+jm9BxR379dQC/EUL4qIh8EMA7AXxgrw7andRVHF476ORJtHF86gkFpGSyKtq0nbiVuqLPm0zJijOcMZV5zNMVl0ZnXcXiULdituS1/05C/XvJiUREbwrhQAcmKgCAcpPMPyT+LxVs4Mcrp85jEJhbjlUG5jYDgGe2NRCmfcmSaGTJI5DVn6yNvUArP1hkBEngTaVpQ+GKy/ZKHoyevKIzTp5xp9X8mNq0Jqnmgh6ATaIA0KbAplBWHaKZdkE35OlYXbMqZm5Zr1PHrZgWvS8Dn4CbmlSBuAedae+mGRXdm+RiWG3YcRTr+tlnDt65X7x6YsYwsIYgIicB/LcAfqv3WQC8AcDHe03uBfD2/fQVERFxONivGP8fAPwy0LfqzwMo9nKzA8B5ACd2+R1E5F0icp+I3NfequzWJCIiYgjYT372HwKwEkL4yvM5QAjhQyGEu0MIdydTY9f+QURExIFgPzr7dwH4hyLyVgB5dHX29wGYEZF07+1+EsCFa3UUgqBe6+kaidUtxmZVD5t1Lqas59aI/K/udM1cifjlrUUKaeIuz1RUl002rLQRaqzcW/Md65CtAvGpO3MSZQk2ujcArFZ0zFmnN05l1dR3kjjfv33qGdPudHa1X15p2cg5Jpbk6KoHz1mX2+S8thvbcFF7tK3C+xueeMLopU5VbNKw0qRip+2lhbSJ5MKRUdYndL5DSgcVbpgy7RqTlAbbkVIkFa0zs+0iGsvb2r/U7IkyV2c7b/eTOI11qOi92ZryHPv6mV1iAaBCedu2GnowT0RRpP2uUsXufd26dKV7nOtJ2RxCeE8I4WQI4TSAHwPwlyGEnwDwOQA/0mv2DgCfvFZfERERh4frsbO/G8AvisiT6Orwv/3CDCkiIuIg8Jw86EIInwfw+V75aQCveU5Hk4B0z8RxYqFoqk6Mq9w9l7WmlUc31ZvsyStH+uXstoseItNQruhMPBRdVVhR2VRKVozvNFXsTk1ambAxo2Ilpy3y4i1zxZcag90PPBHCXTNqUrslv9Iv3567aNqNi5puyh3r0XWloWaor5451S+nz1mxL7dOJCDWwmOj1GgaO/5UqK45aeebTXasCnhuhdq8ftEac6ZUEvHbWa2rT1txvzY/WKXiFGGsJjQuu/0jpjl0Hm5t4vDPPOuiKRs8j6ySOGIVMsF683OT1C1WU8tVe20blB7Mp5Damun22e5ED7qIiJFHXOwRESOCoQbC5NJt3LzQ9RZayluvME5tc//qKVN3ZVNF09QmBbs4L7nspopR2ZLbDa3SDnyF+MxajjBhjDKpLtgt2+YUpUWixySLbwCQzakcPJG1Xng58qR63cLjpu7VhTP98nxK1YtasJfpC9Wb++Vn6oum7u8vnu6XkwsqLma23Y47SbHeK0zoM6soXkRuFwbv/CZk1ODAo8aUH8dgD73cJhGJkMciE2N0+yBx30q+hlQjt6oXzWdJYguE56cDEat4lY2P3Zyn37ldcSazqLoUUrUBfIBe1eCd/4bzMt2x+qSu14MuIiLimx9xsUdEjAjiYo+IGBEMVWfPplo4MVYEYFMTAcCF8ky/vLZtA/MbJYpmq+5u0gGAbInJC61OI5QiKBA3PKYmTDtkdEoa89ZEwlFezIXenLM63olp3Y/wEWuvnjrXL/83Y0+YuqVETXFN2sP4k81vM+3u39Q9jcfXrM5eflr3GXIlHq9phjalyvJc7py+ilNqhcxgfTB7xSqzbL5rjdM4nPmOOfZri7b/wooOjPcAvF7Oew4dP0ZS79kMl3YZpBpkOsxsOM9J6rM17tOFDSABcR6iQnNcL7tJ4LTPlAYts2UvDO8P+P53vCXDVSGYivhmj4gYEcTFHhExIhguB52EfiZKL8azh1HbcW5LRcUqFqlSDWd6K6k9xVsg2gV9rnUo0CFVcNlkx/Rzfc6ZSGaIK35JDzB51MqETBrBmTcB4GRWiQomU1YP2SYT21+Wb++Xv75to4cfWVaPwvp5q4bk1ikwg65uO+/ET5q69phVeTiTrbAnmAsQyV/U+fGBR0RxbjzvvKddiwJEggsyqXCKLTI7iZOchcxoLKoD1vTG51w94rjnKRNv2p0LqyG1JWeqJW+7FHEnJi7IqdWkuas7fkQK4OKcCVcFWPG6qNn39KWNbnBQsxXTP0VEjDziYo+IGBHExR4RMSIYqs7eCdLX1YsN6wpYI4KK5razrbA5hfT0TNnqXRwZdVUkGqcUbg8wwwFoTqiiVJ+0+l9jhsqku81mLYHgbE5dXRezVp+fITdY1ssB4G+Lt/TL57f1YN4UWSNCxNyWHWMwRI/kbppzOnt6sBmH9W1ZV4U7u+l44yk4MWUp9iGcj4344H1OOEzp3M3M2AhEdiutj9E94VJ6pzf1pH36bCbL4Llpi23H2ydhj1WRLtn7pUV5/UB6utHRAXTIpOaJPlg3Z7NnUrVjzK+RPr9uB1nrcduH5uD3d3yzR0SMCOJij4gYEQxVjG90Epwrd/nKt1zq2ysbShQhOWu24Iih7AUdcjtr5aHKkcGi0vgK8YenyQyXtVPQzpOZzzk6GQp4Iglotu0zk1Mt1V1I2Z9svrJffnDD8sKdW1Eud07/2ylZGwx7ePlsP81ZEt0LNI9ZJz+TKJyqWJEzS2meEhLPxUWKsfhZn7V1zNvPYxRnVuX0xRlnrpouqNtcc0p1BiZ4AIDmUR1/6bzlp8Oq1pGDoiXoAMAcIB2v1vBt5aLZ0ms6Ce0Jui6uj6S8x3uVrnWKLHs5xw04+axeQ8+Pn9S7n5011yC+2SMiRgRxsUdEjAiGKsa3QwqbParcjYolPuP0OzOzdgf78tn5fplFwtqiFXM4uCPrdqkhKmI1xkl0rFpxiznSQjLYG4uzxK5nrej4YFvrlh2P3WZN1ZcrK07k5JMjT6p00YrZvOPcmHVcZyy68/CrzmuLKJZza253m53+mIPOeXSxN5wPQGkTKUVma4/deFInWk4dylOaJFb6xjJWBk+o0/S3Fk3dw0+p92GKSCiuGscAURqAmQPvtcmvyzRZK/yOPgfyeCIRVpU4M25uyw4yXWUyD9v/zvl49WTAUCMiIl7KiIs9ImJEEBd7RMSIYKg6ewhAo6fPzo7ZaLBbp6/0y48Vj5g61pk4gL+16BQUilxqF5ynE0W9cX6mtKWoNzpP0/Fa8LFZB+ts2mncTut+hI9CqhZJ+3Qpp9lzLVWnfQWn47FJUFpuX2GAp1bKRUkxb7xPycS6Ph/LE1My6QVzqwNAm86FzZmekCG9rXWbmy6dV0aVZ9bTfRpsfmUtuJwD33OHkno+uKKmzu2S3TNq055Gx5sii2Sm9Do7b1Ww/u7uK/b2TDXs/ka+qJOVK+p5ZpdtmihOP9aYtF6VnoBkN8Q3e0TEiGBfb3YROQNgG93ceK0Qwt0iMgfgYwBOAzgD4EdDCBsHM8yIiIjrxXMR478vhLBKn+8B8NkQwntF5J7e53fv1UG7k0Kx3BWfbltcMXVPbCqX2sqmlZ9ZVO2cUPm5ULBifJo8sJpz9tTqVbIbFSnAYsEPkt29XPAIkyuQqeYqUZp+V92w4mKqrCLiVSQM1A+L7t4UxJ/FibSdzO4cZFeZe/bIzsrpoAxXnWvXLtB8OI+x/IzakxrjlHk3b90S0yTWM889ACwXtW16Qa97vmDdxKbyeqxiYud7Lqfy9N1Hn+2Xz5Wsy99GTX+37TKk1hNVLwrnnYhPXPdsNuN0YwBQWNOLxplrAaCdZw46IvNw3p3S0D6Suu2jn8l2MAXddYnxbwNwb698L4C3X0dfERERB4z9LvYA4C9E5Csi8q7ed0shhEu98mUAS7v9UETeJSL3ich9ra3Kbk0iIiKGgP2K8d8dQrggIkcAfEZEvsGVIYQgsnvemRDChwB8CAAKLzs+mIs4IiLiQLGvxR5CuND7vyIin0A3VfOyiBwLIVwSkWMAVvbsxOGRy0fNZ8Ol7Qj5QASICemGPkpqknS3k4vLpq7UVLPF6oKaLbacftYml8206z9FEU+BdOXgHmHVkh5LnMmLXV19FBmTJe4ZvcQ6vNPR0uTiy2mTfR41/p1P2cw53Jp7EEIKpQ0eG7fsFVNjqmOnyK22MeNIFyiCrbRqzUkpMsu1L5FOPWn1/gqZpDYL9noWC/q7k5PFfvmGCbuXzJ+9ae9L6Rv65TKs+3PmMR0j5xccu2TnI7NCLuDuhgk5PR8mU/HEKo1paudl8n28Rq8pxovIuIhM7pQB/ACAhwB8CsA7es3eAeCT1z5cRETEYWE/b/YlAJ+QriNKGsB/DiH8mYh8GcAfiMg7AZwF8KMHN8yIiIjrxTUXewjhaQCv3OX7NQBvfC4H67RTKuIWHTMEp9Fx5BUmMqqlZrNGxpFckBhfa9kQrZdNqofesQLJtPOmmRHhcom1ea3U1CTYIHeytar1/GJxv+Q4wRoUHeaj2VisZ2+1vUgjPJjwIL+mx/JRXpyGKaSs2NpkkXBK52Bx0eoCC2Nq1prK1kzdZFqvRYbIPNLuZHKkk6ROW1n0i1dO98vnLtKFcvz17S09mZJTAet1ncgKpUbOOhXt+ISSxS/mrefabQuqoT6d2N9tNtWElyH+98KqE5pJdJdt5163pcdLkRrSOmJThrMnYjvnozpxTUQPuoiIEUFc7BERI4K42CMiRgRDjXpDR4Ad8kRnlhfWtXzWXc5/Nak6XiZjdeqJjNqrmLsdADKkK945caFfPuoSe92evdwvp9wYP7Lx2n75axvKgNJoOddc0hPnlqyeWyO9sZK2Nq+woXXszpouOVdXsup4ZpLsFjGdbOs5p5x7ZUhrn1UXmcfpqBsUfZd1+uqrZ9X9dMzZCicpLPAU5bdrO5vRuCecJ3xL4WK/fP/cjf3yV1ZPmXbL68r403Y6e6ejx2sSg1C1bveMihQFNz9ldeqbptb75ZfNrZq6r1XV7Fe9pHs6BcfrnlS1LpWzx5a2zmubzIi1JXt/1KeJKDXt3Z9713cPE1x8s0dEjAjiYo+IGBEMV4yXgNDzuhJHEJBQSl4f5dVYUDEnO6ni4uKEFbdum1avufmMrWNSwo2WemrlxcrB32ioZ1/bPQtbJBKyB1255tI+k7i4vmo9rtJkVkyVXFQTSclM0jhx3trNJi7qHHSSfdhcAGRK9jw7xJ0vzkwpxJbYSbTuQnrOtPtyRkXrb58/a+rm0mpOOp1WMf5GZ/J6ljwWix3r/baYVhXo1RPav1evnsxrxORyyc43e3EnlEq77MT4ckmPfWllxtRt11S09mL89IQyfxRn9b5q5ey90y6kdy0DQJOjAikteKvgOPbpo18jrR1T3AFFvUVERHwTIS72iIgRwXDF+ACguZOmxsobrXkK7ncivumCJLhK04qfxabuXmb28NTilEx/V7nFtJvLVnb9DQCcztOuMolbHSc7rZXVo27LcZ11VlRcTNXs79KUtZM93sYvWxHcc5OZ/nM6J50xLacqdrdcEg64cDvkl5mEgbjWgxV9n0g0qrnqVIE3H3tk1/FNpGyG3smOisE1p1JNkdmhTPmZph1pXj7R333bwkVTlybvvQxN6vnKjGm3mlcR3GfNbVKwztlNS3qRJ4tQi7Lm8s45AGQpqKc+Y+/v2iynI6MK5/WYphwH3grT6GUc3ouLLr7ZIyJGBHGxR0SMCOJij4gYEQxVZ5e2INOL9GrOOJ16Wj2u5k9ZsxmbQprEu77asc+qRYrCunPikqmbJSJvjmybSttorVJbdcP8Homzvn3imX751oIlyjhX1witx7YsW9eTeWW4rJ6zZiJUd7eb1OatPpwuk95ftWOUjip6qQaH0dk+UzU973TazmN9TucgQ1544xft+OqzqmBezMyYuk+1X6F93KB6bRuPmnYZ0VuwFux5ZkV19lsyGrW43XYknlOqy260bAQie/bxXo33sGxQ8rSWu684JTd74QHA5rYej9M0N6bsXG28nPZSXMBnm06b92oybmumsE7XtmnNj/2IuOhBFxERERd7RMSIYLimN6AvZjB/GQAUcpT2xgVczM+pPLMWNKCgVbHD36qrePtszXp7ZSiV8RgFX3izGYv4Pmij6YnTeziVWTOfT2dV5ORgDgB4YEL5zP46c7Op2zinZp02eRSuF+w4gqjoOH7ZBpJIi0gSKAdTqm3nVMpqvpKsY8MQnUc2E9XmvZpBKZsdScf6ppqvPvjA9/bLD95ywrR7xaQGJR3PFE3daRLdjyYqdv+DvPXWm6G6J+tWbfpGWT0iz5dn+uW6C15q03WvNux81Or6udWw90DYJG57Iq+onHB6E3u/1XwQC5VJleOUUYAV8Zvjdr53NM7daV97bQZXRUREvJQQF3tExIggLvaIiBHBcE1vLSB/pauTbE9b3SezqDrlYsHaHCazqpe2KcdavWmHv7yppqxyw9o3/q5zul8ey+r+QMbtD0wTceJtU9akxii2VW8+6xLGZcjN9o78BVP35ukH++Ubcuum7o8yd/XLF9nc6PYmNknfTLXteWa3KEJwQ+ctJI7ckggUpGb1/qSm51af5ogsZ+6ZICLJrGPF5GizRJXNv37wNtPsGydUx36lc3V90yyRXSa6x3Aybd2YMzL4Ol1qKGnjQ9Vj/fJ2xbrtZrPaZ3nbRt8FIrT0+nZ2k6LUKKV3Z8LtkWR0Dtqbdk8gRfkFmZjE53Orslut22bZIQ2N7rIRERFxsUdEjAqGKsYndWD6TI+8omMPXZxTr6jJeStWfs/sk/3yFzM39cvrdestVWmquHVpY8rUNSll8wapAkneioTFcRXj9+KxW8hoOh9vvmOz3+W65f5mb7sbs5YI4cdv+HK//DG5u19eLlpPuxqJ2Y0L9nnNol9zisxCnmacPO1CyvZRPaK/Y35y71CYlEmETVm5cmxB526MzKqdCRux1iT+u42G9Yx7oKzkGDMp7S+TsambGEx4AQB3jKlqsL2g4vmXLt1g2m1z6qmWnY8MmUEzm85US9oAp81Kxux9xdx4knZ8gLK7ua05bo/F85+49GCddOSgi4iI6GFfi11EZkTk4yLyDRF5VES+U0TmROQzIvJE7//stXuKiIg4LOxXjH8fgD8LIfyIiGQBjAH4FQCfDSG8V0TuAXAPgHfv3U2AtLtyxsRF62HU+Yp6xl1asiL4d0yr/PLjR77QL3+1ctq022iqePtE7oipu7ClfRo65y2X9ZNSPP1N2RJbzM+oleBlMyqCf9+syWCNIxkVJZ+oWo+uv9vUPo/lrch5U049xpj84TOp2027c+TFVZ+1om9um7LLEj9dJ2t341tHVTUonXB8bCeoD5IkE8f6LBsUINKxImdtTPtkMX48a3WBBbK8eG6587WZfvkPm6rWvGrinGnHfHfNYG/pOm1b31BQ68eZSethWbqiYnx21c5ViqjMXfdojlNm3yztuDt+QdD8SN3OFafsapDG5jg6kKlo/+manauNlye7jo+xnyyu0wC+F8BvA0AIoRFCKAJ4G4B7e83uBfD2a/UVERFxeNiPGH8TgCsAfldEvioiv9VL3bwUQtiJI72MbrbXqyAi7xKR+0Tkvla9vFuTiIiIIWA/iz0N4NUAPhBCeBWAMroiex8hhIAB+4AhhA+FEO4OIdydzo3v1iQiImII2I/Ofh7A+RDCF3ufP47uYl8WkWMhhEsicgzAysAeeki1AnLrXZ2tctR7fumz4vH7rVnkz75d9bwfWFBd9nsnrK58uaVmriPZbVO3PqUPmie2lWf8TMbqbptbqve3StacdGVZPeWWC/q71Zfbh9j/dOqv+uWkYPcmOHKOxwEACTFMLBBzwbRLh5wr6Hw0ZhyhJRFMtLP6LK9PW4+x6rzWlW40VQikO+eKZKZ05h721nLZn9Cq6q21kdL5KWVdGuxN3SMZL9hNgQx53nEk5Jltm2f79KRGHV6hPRcA6NAg82nynEw5jz9Ks+2DGwM1rc/5aDaKMmyRLu4IMJi7NLNl69gbbi9ueI562z5hB9mY7o6jM5ir9dpv9hDCZQDPisiOn+MbATwC4FMA3tH77h0APnmtviIiIg4P+92N/2cAPtLbiX8awD9B90HxByLyTgBnAfzowQwxIiLihcC+FnsI4QEAd+9S9cbncjBptpG5VAQAjKVmTF1zTE1g7LEEAA+c0aydDfK8e2rKmtdeO/GU9uF44+eIg+47ZrU8m7X2jQsTqgqcW7euA7UmmWfWVF56/JGTpt2v13+wX/7hUw9gv/jKuqovnMpqMW8Dg55KVIytZ12wxBx5vFGwUW3OmnsqJzjDq+M4Jy8xE5hRtcfi9ETNKSvepsiDLKGUT62mM2uRqF7ctOpQoAARQ/6Q2HE8dVnVoXbVy+A0HwUdUypl+0hRWq7WpCOoGCd52mWJFR4jdelF8IQCaLwnIjuTdjLaScE6WKI2p9epetRdi+ne+JPBLnTRgy4iYkQQF3tExIggLvaIiBHBkHO9BUizq8yk6lanHl+mXGwz1uRVp2D/M+tq8io1rDnpgQ3Vnb9l+rKpmyDlc5bSOd81+axpd8uYuqw+kj9m6u6H9l9N1ESX3rR63PKTaqL7wMrrTN1NJ1QR87nqKpRG+EpZ9dfE6Zf1OpFXON2wOUGul0Q20TzpfF23tI/cutXn8+tMWqnfVxdtu+qS6tu5YzZCcGlaTZ9MEOLPeaNEEXxr1nU5Keu8sutopuRC+Gi7wFvU2BTVotx3zUkXeTamnRSO2T2SFkXmNZxbcOD3JY2DI9kA63KbWEsqOmQtzFKq7uDch5vUzudd2A/imz0iYkQQF3tExIhAQhi8Vf+CH0zkCro2+QUAq9doftB4MYwBiOPwiOOweK7juDGEsLhbxVAXe/+gIveFEHaz24/UGOI44jiGOY4oxkdEjAjiYo+IGBEc1mL/0CEdl/FiGAMQx+ERx2Hxgo3jUHT2iIiI4SOK8RERI4K42CMiRgRDXewi8mYReUxEnuwx0g7ruL8jIisi8hB9N3QqbBE5JSKfE5FHRORhEfn5wxiLiORF5Esi8rXeOP5N7/ubROSLvevzsR5/wYFDRJIev+GnD2scInJGRB4UkQdE5L7ed4dxjxwYbfvQFruIJAB+E8BbANwB4MdF5I4hHf7DAN7svrsHXSrsWwF8Fo5X74DQAvBLIYQ7ALwWwM/25mDYY6kDeEMI4ZUA7gLwZhF5LYBfB/AbIYSXAdgA8M4DHscOfh7Ao/T5sMbxfSGEu8iufRj3yA5t++0AXonuvLww4wghDOUPwHcC+HP6/B4A7xni8U8DeIg+PwbgWK98DMBjwxoLjeGTAN50mGNBNwfA/QC+A11PrfRu1+sAj3+ydwO/AcCn0aWpOIxxnAGw4L4b6nUBMA3gGfQ2zl/ocQxTjD8BgEPMzve+Oyzsiwr7oCAipwG8CsAXD2MsPdH5AXSJQj8D4CkAxRDCThzdsK7PfwDwy9CYsflDGkcA8Bci8hUReVfvu2Ffl+uibb8W4gYd9qbCPgiIyASAPwTwCyEEkxZmWGMJIbRDCHeh+2Z9DYDb9/7FCw8R+SEAKyGErwz72Lvgu0MIr0ZXzfxZEflerhzSdbku2vZrYZiL/QKAU/T5ZO+7w8JyjwIb+6XCfiEgIhl0F/pHQgh/dJhjAYDQze7zOXTF5RkR2Ql0H8b1+S4A/1BEzgD4KLqi/PsOYRwIIVzo/V8B8Al0H4DDvi670ba/+oUaxzAX+5cB3Nrbac0C+DF06agPC0OnwhYRQTeN1qMhhH9/WGMRkUURmemVC+juGzyK7qL/kWGNI4TwnhDCyRDCaXTvh78MIfzEsMchIuMiMrlTBvADAB7CkK9LOGja9oPe+HAbDW8F8Di6+uG/GuJxfx/AJQBNdJ+e70RXN/wsgCcA/H8A5oYwju9GVwT7OoAHen9vHfZYAHwbgK/2xvEQgP+t9/3NAL4E4EkA/wVAbojX6PUAPn0Y4+gd72u9v4d37s1DukfuAnBf79r8MYDZF2oc0V02ImJEEDfoIiJGBHGxR0SMCOJij4gYEcTFHhExIoiLPSJiRBAXe0TEiCAu9oiIEcH/Dy2GQh+bTGLgAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]}
|
Defect_013.png
ADDED
![]() |
Hole.png
ADDED
![]() |
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,12 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1 align="center"> Textile Defect Detection</h1> <br>
|
2 |
+
|
3 |
+
## Introduction:
|
4 |
+
Fabric defect detection is a necessary and essential step of quality control in the textile manufacturing industry. It is the determination process of the location, type and size of the defects found on the fabric surface. Traditional fabric inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial. Lack of concentration, human fatigue, and time consumption are the main drawbacks associated with the manual fabric defect detection process. Applications based on computer vision and digital image processing can address the abovementioned limitations and drawbacks. Here we have used machine learning and deep learning approach to identify/categorize defects.
|
5 |
+
|
6 |
+
<h4>Youtube Link : https://youtu.be/Vw78gLfCQ44
|
7 |
+
|
8 |
+
<br/>
|
9 |
+
<br/>
|
10 |
+
|
11 |
+
|
12 |
+
## Instructions For Running WebApp on local server:
|
13 |
+
1. Go to terminal.
|
14 |
+
2. Create a directory tex-detection using ```mkdir tex-detection```
|
15 |
+
3. cd tex-detection
|
16 |
+
4. clone the repository using the command ``` https://github.com/Rajvardhan7/Textile-Detection.git```
|
17 |
+
5. Install all the requirements using command ``` pip install -r requirements.txt```
|
18 |
+
6. Run the commmand ```streamlit run app.py```
|
19 |
+
YOUR APP IS READY!!
|
20 |
+
|
21 |
+
## 1) Defect Detection
|
22 |
+
|
23 |
+
Technology/Framework Used : Numpy, Pandas, Matplotlib, CV2, Skimage, Scipy
|
24 |
+
<br/>
|
25 |
+
<br/>
|
26 |
+
|
27 |
+
<h4>Hole Detection - circular boundary using Hough Transformation:</h4>
|
28 |
+
The Hough transform is a feature extraction technique used in image analysis, computer vision, and digital image processing. The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure. The algorithm converts RGB image to Grayscale for improved detection. By optimizing its parameters, we were able to get clear accurate bounding circle around the holes.
|
29 |
+
<br/>
|
30 |
+
<p align="left">
|
31 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/download%20(1).jpeg" height="210px"/>
|
32 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/Hough.png" height="210px"/>
|
33 |
+
</p>
|
34 |
+
|
35 |
---
|
36 |
+
|
37 |
+
<h4>Gabor & GrayScale Filter Masks </h4>
|
38 |
+
In image processing, a Gabor filter, named after Dennis Gabor, is a linear filter used for texture analysis, which essentially means that it analyzes whether there is any specific frequency content in the image in specific directions in a localized region around the point or region of analysis.
|
39 |
+
In the third image, reduced frequency/light/brightness of overall image shows a distinctive dark patch indicating a defect.
|
40 |
+
<br/>
|
41 |
+
<p align="left">
|
42 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/download%20(1).jpeg" height="150px"/>
|
43 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/GrayScale%20Transform.png" height="150px"/>
|
44 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/Gabor_filter.png" height="150px"/>
|
45 |
+
</p>
|
46 |
+
|
47 |
---
|
48 |
|
49 |
+
<h4>Masking or Image Segmentation</h4>
|
50 |
+
The defect is clearly visible after masking the image.
|
51 |
+
<br/>
|
52 |
+
<p align="left">
|
53 |
+
Normal Fabric Image
|
54 |
+
<img src = "https://github.com/Rajvardhan7/Textile-Detection/blob/05a14835ede3dfe1076ec69b992f88df957629f2/Defect_013.png" height="150px"/>
|
55 |
+
<br/>
|
56 |
+
Masked Image
|
57 |
+
<img src = "https://github.com/Rajvardhan7/Textile-Detection/blob/05a14835ede3dfe1076ec69b992f88df957629f2/013.png" height="150px"/>
|
58 |
+
</p>
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
|
63 |
+
## 2) Defect Classification
|
64 |
+
|
65 |
+
Technology/Framework Used : Numpy, Pandas, Matplotlib, Sklearn, Keras
|
66 |
+
<br/>
|
67 |
+
<br/>
|
68 |
+
|
69 |
+
|
70 |
+
<h4>Using CNN Layers : Predicting Color Blending Image Correctly</h4>
|
71 |
+
The images in the data set were categorised into 'Color','Cut','No Defect','Hole','Metal_Contamination'&'Thread'. Developed a Convolutional Neural Network Model(below figure for reference) to train the large image dataset(about 90,000 samples) in order to get high validation accuracy.
|
72 |
+
Able to get good accuracy(about 90%) in few 50 epochs only.
|
73 |
+
<br/>
|
74 |
+
<br/>
|
75 |
+
<p align="center">
|
76 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/5894d40475097a650a885e8e1612a532c2781954/Model.png" height="400px"/>
|
77 |
+
</p>
|
78 |
+
<br/>
|
79 |
+
<p align="left">
|
80 |
+
<img src = "https://github.com/Rajvardhan7/Textile-Detection/blob/8e9d1a10667f02e4c8f3086524715406572326a8/Thread.png" height="350px"/>
|
81 |
+
<img src = "https://github.com/navyasancheti/Textile-Defect-Detection/blob/53b735bc5e0486897e64cd49b4a82ef74a9d84a7/Color_blending.png" height="350px"/>
|
82 |
+
</p>
|
83 |
+
|
84 |
+
|
85 |
+
|
Thread.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
|
5 |
+
from skimage.filters import gabor
|
6 |
+
from skimage import data, io,color
|
7 |
+
from skimage.color import rgb2gray
|
8 |
+
import numpy as np
|
9 |
+
import plotly.express as px
|
10 |
+
from scipy import ndimage
|
11 |
+
from sklearn.cluster import KMeans
|
12 |
+
import PIL
|
13 |
+
from PIL import Image
|
14 |
+
import streamlit as st
|
15 |
+
|
16 |
+
st.sidebar.title('Textile Detection')
|
17 |
+
|
18 |
+
st.title('Detect Defects on clothing items')
|
19 |
+
|
20 |
+
def f(a):
|
21 |
+
# Read image.
|
22 |
+
img = a.copy()
|
23 |
+
|
24 |
+
# Convert to grayscale.
|
25 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
26 |
+
|
27 |
+
# Blur using 3 * 3 kernel.
|
28 |
+
gray_blurred = cv2.blur(gray, (3, 3))
|
29 |
+
|
30 |
+
# Apply Hough transform on the blurred image.
|
31 |
+
detected_circles = cv2.HoughCircles(gray_blurred, cv2.HOUGH_GRADIENT, 1, 20, param1 = 50,
|
32 |
+
param2 = 30, minRadius = 1, maxRadius = 40)
|
33 |
+
|
34 |
+
# Draw circles that are detected.
|
35 |
+
if detected_circles is not None:
|
36 |
+
|
37 |
+
# Convert the circle parameters a, b and r to integers.
|
38 |
+
detected_circles = np.uint16(np.around(detected_circles))
|
39 |
+
|
40 |
+
for pt in detected_circles[0, :]:
|
41 |
+
a, b, r = pt[0], pt[1], pt[2]
|
42 |
+
|
43 |
+
# Draw the circumference of the circle.
|
44 |
+
cv2.circle(img, (a, b), r, (0, 255, 0), 2)
|
45 |
+
|
46 |
+
# Draw a small circle (of radius 1) to show the center.
|
47 |
+
cv2.circle(img, (a, b), 1, (0, 0, 255), 3)
|
48 |
+
|
49 |
+
break
|
50 |
+
return img
|
51 |
+
|
52 |
+
|
53 |
+
image = st.sidebar.file_uploader("Upload an image", type = ['jpeg', 'jpg', 'png'])
|
54 |
+
|
55 |
+
|
56 |
+
if image is not None:
|
57 |
+
|
58 |
+
option = st.selectbox('Choose an option',\
|
59 |
+
('Original Image', 'Hough Transformation', 'Gray Scale Transformation','OpenCV'))
|
60 |
+
|
61 |
+
|
62 |
+
image = Image.open(image)
|
63 |
+
image = np.array(image.convert('RGB'))
|
64 |
+
|
65 |
+
if option == "Original Image":
|
66 |
+
st.subheader("Original Image")
|
67 |
+
st.image(image, use_column_width = True)
|
68 |
+
|
69 |
+
if option == "Hough Transformation":
|
70 |
+
st.subheader("Hough Transformation")
|
71 |
+
b = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
72 |
+
filt_real, filt_imag = gabor(b, frequency=0.05)
|
73 |
+
gray = rgb2gray(image)
|
74 |
+
|
75 |
+
gray_r = gray.reshape(gray.shape[0]*gray.shape[1])
|
76 |
+
for i in range(gray_r.shape[0]):
|
77 |
+
if gray_r[i] > gray_r.mean():
|
78 |
+
gray_r[i] = 3
|
79 |
+
elif gray_r[i] > 0.5:
|
80 |
+
gray_r[i] = 2
|
81 |
+
elif gray_r[i] > 0.25:
|
82 |
+
gray_r[i] = 1
|
83 |
+
else:
|
84 |
+
gray_r[i] = 0
|
85 |
+
gray = gray_r.reshape(gray.shape[0],gray.shape[1])
|
86 |
+
fig = px.imshow(gray)
|
87 |
+
st.plotly_chart(fig)
|
88 |
+
|
89 |
+
|
90 |
+
if option == "Gray Scale Transformation":
|
91 |
+
b = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
92 |
+
st.subheader("Gray Scale Transformation")
|
93 |
+
st.image(b, use_column_width = True)
|
94 |
+
|
95 |
+
if option == "OpenCV":
|
96 |
+
st.subheader("OpenCV Algo")
|
97 |
+
img = f(image)
|
98 |
+
st.image(img, use_column_width = True)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
else:
|
107 |
+
st.write("please upload an image in the formats shown above")
|
download (1).jpeg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==0.9.0
|
2 |
+
alabaster==0.7.12
|
3 |
+
altair==4.1.0
|
4 |
+
anaconda-client==1.7.2
|
5 |
+
anaconda-navigator==1.9.7
|
6 |
+
anaconda-project==0.8.3
|
7 |
+
asn1crypto==1.0.1
|
8 |
+
astor==0.8.1
|
9 |
+
astroid==2.3.1
|
10 |
+
astropy==3.2.1
|
11 |
+
atomicwrites==1.3.0
|
12 |
+
attrs==19.2.0
|
13 |
+
awscli==1.18.56
|
14 |
+
Babel==2.7.0
|
15 |
+
backcall==0.1.0
|
16 |
+
backports.functools-lru-cache==1.5
|
17 |
+
backports.os==0.1.1
|
18 |
+
backports.shutil-get-terminal-size==1.0.0
|
19 |
+
backports.tempfile==1.0
|
20 |
+
backports.weakref==1.0.post1
|
21 |
+
base58==2.1.0
|
22 |
+
beautifulsoup4==4.8.0
|
23 |
+
bitarray==1.0.1
|
24 |
+
bkcharts==0.2
|
25 |
+
bleach==3.1.0
|
26 |
+
blinker==1.4
|
27 |
+
blis==0.4.1
|
28 |
+
bokeh==1.3.4
|
29 |
+
boto==2.49.0
|
30 |
+
boto3==1.13.6
|
31 |
+
botocore==1.16.6
|
32 |
+
Bottleneck==1.2.1
|
33 |
+
cachetools==4.0.0
|
34 |
+
catalogue==1.0.0
|
35 |
+
catboost==0.20.2
|
36 |
+
certifi==2019.9.11
|
37 |
+
cffi==1.12.3
|
38 |
+
chardet==3.0.4
|
39 |
+
chart-studio==1.1.0
|
40 |
+
chatbotAI==0.3.1.0
|
41 |
+
ChatterBot==1.0.8
|
42 |
+
Click==7.0
|
43 |
+
cloudpickle==1.2.2
|
44 |
+
clyent==1.2.2
|
45 |
+
colorama==0.4.1
|
46 |
+
colorlover==0.3.0
|
47 |
+
combo==0.1.0
|
48 |
+
comtypes==1.1.7
|
49 |
+
conda==4.10.1
|
50 |
+
conda-build==3.18.9
|
51 |
+
conda-package-handling==1.6.0
|
52 |
+
conda-verify==3.4.2
|
53 |
+
confuse==1.1.0
|
54 |
+
contextlib2==0.6.0
|
55 |
+
cryptography==2.7
|
56 |
+
cufflinks==0.17.0
|
57 |
+
cycler==0.10.0
|
58 |
+
cymem==2.0.3
|
59 |
+
Cython==0.29.14
|
60 |
+
cytoolz==0.10.0
|
61 |
+
dask==2.5.2
|
62 |
+
dateinfer==0.2.0
|
63 |
+
DateTime==4.3
|
64 |
+
decorator==4.4.0
|
65 |
+
defusedxml==0.6.0
|
66 |
+
distributed==2.5.2
|
67 |
+
distro==1.5.0
|
68 |
+
docutils==0.15.2
|
69 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.5/en_core_web_sm-2.2.5.tar.gz
|
70 |
+
entrypoints==0.3
|
71 |
+
et-xmlfile==1.0.1
|
72 |
+
fastcache==1.1.0
|
73 |
+
filelock==3.0.12
|
74 |
+
Flask==1.1.1
|
75 |
+
Flask-SQLAlchemy==2.4.3
|
76 |
+
fsspec==0.5.2
|
77 |
+
func-timeout==4.3.5
|
78 |
+
funcy==1.14
|
79 |
+
future==0.17.1
|
80 |
+
gast==0.2.2
|
81 |
+
geneticalgorithm==1.0.2
|
82 |
+
gensim==3.8.3
|
83 |
+
gevent==1.4.0
|
84 |
+
gitdb==4.0.7
|
85 |
+
GitPython==3.1.14
|
86 |
+
glob2==0.7
|
87 |
+
google-auth==1.11.3
|
88 |
+
google-auth-oauthlib==0.4.1
|
89 |
+
google-pasta==0.2.0
|
90 |
+
graphviz==0.14
|
91 |
+
greenlet==0.4.15
|
92 |
+
grpcio==1.27.2
|
93 |
+
h5py==2.9.0
|
94 |
+
HeapDict==1.0.1
|
95 |
+
html5lib==1.0.1
|
96 |
+
htmlmin==0.1.12
|
97 |
+
idna==2.8
|
98 |
+
imageio==2.6.0
|
99 |
+
imagesize==1.1.0
|
100 |
+
imbalanced-learn==0.6.2
|
101 |
+
importlib-metadata==0.23
|
102 |
+
ipykernel==5.1.2
|
103 |
+
ipython==7.8.0
|
104 |
+
ipython-genutils==0.2.0
|
105 |
+
ipywidgets==7.5.1
|
106 |
+
isort==4.3.21
|
107 |
+
itsdangerous==1.1.0
|
108 |
+
jdcal==1.4.1
|
109 |
+
jedi==0.15.1
|
110 |
+
Jinja2==2.10.3
|
111 |
+
jmespath==0.9.5
|
112 |
+
joblib==0.13.2
|
113 |
+
json5==0.8.5
|
114 |
+
jsonschema==3.0.2
|
115 |
+
jupyter==1.0.0
|
116 |
+
jupyter-client==5.3.3
|
117 |
+
jupyter-console==6.0.0
|
118 |
+
jupyter-core==4.5.0
|
119 |
+
jupyterlab==1.1.4
|
120 |
+
jupyterlab-server==1.0.6
|
121 |
+
Keras==2.3.1
|
122 |
+
Keras-Applications==1.0.8
|
123 |
+
Keras-Preprocessing==1.1.0
|
124 |
+
keyring==18.0.0
|
125 |
+
kiwisolver==1.1.0
|
126 |
+
kmodes==0.10.1
|
127 |
+
lazy-object-proxy==1.4.2
|
128 |
+
libarchive-c==2.8
|
129 |
+
lightgbm==2.3.1
|
130 |
+
llvmlite==0.29.0
|
131 |
+
locket==0.2.0
|
132 |
+
lxml==4.4.1
|
133 |
+
Markdown==3.2.1
|
134 |
+
MarkupSafe==1.1.1
|
135 |
+
mathparse==0.1.2
|
136 |
+
matplotlib==3.1.1
|
137 |
+
matrix-client==0.3.2
|
138 |
+
mccabe==0.6.1
|
139 |
+
menuinst==1.4.16
|
140 |
+
mistune==0.8.4
|
141 |
+
mkl-fft==1.0.14
|
142 |
+
mkl-random==1.1.0
|
143 |
+
mkl-service==2.3.0
|
144 |
+
mlxtend==0.17.2
|
145 |
+
mock==3.0.5
|
146 |
+
more-itertools==7.2.0
|
147 |
+
mpmath==1.1.0
|
148 |
+
msgpack==0.6.1
|
149 |
+
multipledispatch==0.6.0
|
150 |
+
murmurhash==1.0.2
|
151 |
+
navigator-updater==0.2.1
|
152 |
+
nbconvert==5.6.0
|
153 |
+
nbformat==4.4.0
|
154 |
+
networkx==2.3
|
155 |
+
nltk==3.4.5
|
156 |
+
nose==1.3.7
|
157 |
+
notebook==6.0.1
|
158 |
+
numba==0.45.1
|
159 |
+
numexpr==2.7.0
|
160 |
+
numpy==1.18.2
|
161 |
+
numpydoc==0.9.1
|
162 |
+
oauthlib==3.1.0
|
163 |
+
olefile==0.46
|
164 |
+
opencv-python==4.2.0.34
|
165 |
+
openpyxl==3.0.0
|
166 |
+
opt-einsum==3.2.0
|
167 |
+
packaging==19.2
|
168 |
+
pandas==0.25.1
|
169 |
+
pandocfilters==1.4.2
|
170 |
+
parso==0.5.1
|
171 |
+
partd==1.0.0
|
172 |
+
path.py==12.0.1
|
173 |
+
pathlib2==2.3.5
|
174 |
+
patsy==0.5.1
|
175 |
+
pep8==1.7.1
|
176 |
+
pickleshare==0.7.5
|
177 |
+
Pillow==8.1.2
|
178 |
+
pkginfo==1.5.0.1
|
179 |
+
plac==1.1.3
|
180 |
+
plotly==4.4.1
|
181 |
+
pluggy==0.13.0
|
182 |
+
ply==3.11
|
183 |
+
preshed==3.0.2
|
184 |
+
prometheus-client==0.7.1
|
185 |
+
prompt-toolkit==2.0.10
|
186 |
+
protobuf==3.15.8
|
187 |
+
psutil==5.6.3
|
188 |
+
py==1.8.0
|
189 |
+
pyarrow==3.0.0
|
190 |
+
pyasn1==0.4.8
|
191 |
+
pyasn1-modules==0.2.8
|
192 |
+
pycodestyle==2.5.0
|
193 |
+
pycosat==0.6.3
|
194 |
+
pycparser==2.19
|
195 |
+
pycrypto==2.6.1
|
196 |
+
pycurl==7.43.0.3
|
197 |
+
pydeck==0.6.2
|
198 |
+
pyflakes==2.1.1
|
199 |
+
Pygments==2.4.2
|
200 |
+
pyLDAvis==2.1.2
|
201 |
+
pylint==2.4.2
|
202 |
+
pyod==0.7.9
|
203 |
+
pyodbc==4.0.27
|
204 |
+
pyOpenSSL==19.0.0
|
205 |
+
pyparsing==2.4.2
|
206 |
+
pyperclip==1.8.2
|
207 |
+
pyreadline==2.1
|
208 |
+
PyRect==0.1.4
|
209 |
+
pyrsistent==0.15.4
|
210 |
+
PySocks==1.7.1
|
211 |
+
pyswarms==1.3.0
|
212 |
+
pytest==5.2.1
|
213 |
+
pytest-arraydiff==0.3
|
214 |
+
pytest-astropy==0.5.0
|
215 |
+
pytest-doctestplus==0.4.0
|
216 |
+
pytest-openfiles==0.4.0
|
217 |
+
pytest-remotedata==0.3.2
|
218 |
+
python-dateutil==2.8.0
|
219 |
+
pytz==2019.3
|
220 |
+
PyWavelets==1.0.3
|
221 |
+
pywin32==223
|
222 |
+
pywinpty==0.5.5
|
223 |
+
PyYAML==5.1.2
|
224 |
+
pyzmq==18.1.0
|
225 |
+
QtAwesome==0.6.0
|
226 |
+
qtconsole==4.5.5
|
227 |
+
QtPy==1.9.0
|
228 |
+
randomsearch==0.0.1
|
229 |
+
requests==2.22.0
|
230 |
+
requests-oauthlib==1.3.0
|
231 |
+
retrying==1.3.3
|
232 |
+
rope==0.14.0
|
233 |
+
rsa==3.4.2
|
234 |
+
ruamel-yaml==0.15.46
|
235 |
+
s3transfer==0.3.3
|
236 |
+
scikit-image==0.15.0
|
237 |
+
scikit-learn==0.22
|
238 |
+
scipy==1.4.1
|
239 |
+
seaborn==0.9.0
|
240 |
+
Send2Trash==1.5.0
|
241 |
+
shap==0.32.1
|
242 |
+
Shapely==1.7.1
|
243 |
+
simplegeneric==0.8.1
|
244 |
+
singledispatch==3.4.0.3
|
245 |
+
six==1.14.0
|
246 |
+
smart-open==2.0.0
|
247 |
+
smmap==4.0.0
|
248 |
+
snowballstemmer==2.0.0
|
249 |
+
sortedcollections==1.1.2
|
250 |
+
sortedcontainers==2.1.0
|
251 |
+
soupsieve==1.9.3
|
252 |
+
Sphinx==2.2.0
|
253 |
+
sphinxcontrib-applehelp==1.0.1
|
254 |
+
sphinxcontrib-devhelp==1.0.1
|
255 |
+
sphinxcontrib-htmlhelp==1.0.2
|
256 |
+
sphinxcontrib-jsmath==1.0.1
|
257 |
+
sphinxcontrib-qthelp==1.0.2
|
258 |
+
sphinxcontrib-serializinghtml==1.1.3
|
259 |
+
sphinxcontrib-websupport==1.1.2
|
260 |
+
spyder==3.3.6
|
261 |
+
spyder-kernels==0.5.2
|
262 |
+
SQLAlchemy==1.3.9
|
263 |
+
srsly==1.0.2
|
264 |
+
statsmodels==0.10.1
|
265 |
+
streamlit==0.80.0
|
266 |
+
suod==0.0.4
|
267 |
+
sympy==1.4
|
268 |
+
tables==3.5.2
|
269 |
+
tblib==1.4.0
|
270 |
+
tensorboard==2.0.2
|
271 |
+
tensorflow==2.0.0
|
272 |
+
tensorflow-estimator==2.0.1
|
273 |
+
termcolor==1.1.0
|
274 |
+
terminado==0.8.2
|
275 |
+
testpath==0.4.2
|
276 |
+
textblob==0.15.3
|
277 |
+
Theano==1.0.4+34.g473d74ea4
|
278 |
+
thinc==7.4.0
|
279 |
+
toml==0.10.2
|
280 |
+
toolz==0.10.0
|
281 |
+
tornado==6.0.3
|
282 |
+
tqdm==4.46.0
|
283 |
+
traitlets==4.3.3
|
284 |
+
tzlocal==2.1
|
285 |
+
unicodecsv==0.14.1
|
286 |
+
urllib3==1.24.2
|
287 |
+
validators==0.18.2
|
288 |
+
wasabi==0.6.0
|
289 |
+
watchdog==2.0.3
|
290 |
+
wcwidth==0.1.7
|
291 |
+
webencodings==0.5.1
|
292 |
+
Werkzeug==0.16.0
|
293 |
+
widgetsnbextension==3.5.1
|
294 |
+
win-inet-pton==1.1.0
|
295 |
+
win-unicode-console==0.5
|
296 |
+
wincertstore==0.2
|
297 |
+
windrose==1.6.8
|
298 |
+
wordcloud==1.7.0
|
299 |
+
wrapt==1.12.1
|
300 |
+
xgboost==0.90
|
301 |
+
xlrd==1.2.0
|
302 |
+
XlsxWriter==1.2.1
|
303 |
+
xlwings==0.15.10
|
304 |
+
xlwt==1.3.0
|
305 |
+
yellowbrick==1.0.1
|
306 |
+
zict==1.0.0
|
307 |
+
zipp==0.6.0
|
308 |
+
zope.interface==5.1.0
|
309 |
+
zulip==0.7.1
|