|  | import gradio as gr | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_id = "models/gouthaml/raos-virtual-try-on-model" | 
					
						
						|  | pipe = DiffusionPipeline.from_pretrained(model_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def virtual_tryon(person_image, dress_image): | 
					
						
						|  |  | 
					
						
						|  | output_image = pipe(person_image, dress_image).images[0] | 
					
						
						|  |  | 
					
						
						|  | return output_image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | iface = gr.Interface( | 
					
						
						|  | fn=virtual_tryon, | 
					
						
						|  | inputs=[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")], | 
					
						
						|  | outputs=gr.outputs.Image(type="pil"), | 
					
						
						|  | title="Virtual Try-On", | 
					
						
						|  | description="Upload a picture of a person and a dress, and see the result of the virtual try-on." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | iface.launch() | 
					
						
						|  |  |