Sebastien Peytrignet commited on
Commit
f89fe21
1 Parent(s): 2b8f481

chore: Update dependencies and add utility functions for querying and aggregating data

Browse files
Files changed (3) hide show
  1. .gitignore +160 -0
  2. app.py +5 -20
  3. utils.py +65 -0
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ # .env
124
+ # .venv
125
+ # env/
126
+ # venv/
127
+ # ENV/
128
+ # env.bak/
129
+ # venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
app.py CHANGED
@@ -1,9 +1,11 @@
1
  import streamlit as st
2
  import pandas as pd
 
3
  import folium
4
  from streamlit_folium import folium_static
5
  from pyeuropeana import apis
6
  from dotenv import load_dotenv
 
7
  import os
8
 
9
  # Load environment variables
@@ -14,25 +16,8 @@ if 'EUROPEANA_API_KEY' not in os.environ:
14
  st.error("EUROPEANA_API_KEY is not set in the environment variables. Please set it and restart the app.")
15
  st.stop()
16
 
17
- def get_provider_data(provider_name, rows=1000):
18
- myquery = apis.search(
19
- query='pl_wgs84_pos_lat:(*)',
20
- qf=f'DATA_PROVIDER:"{provider_name}"',
21
- rows=rows
22
- )
23
-
24
- myquery_df = pd.DataFrame(myquery["items"], columns=['edmPlaceLatitude', 'edmPlaceLongitude', 'id', 'country', 'dataProvider', 'dcCreator'])
25
-
26
- def extract_single(x):
27
- return x[0] if isinstance(x, list) and len(x) > 0 else x
28
-
29
- for col in ['edmPlaceLatitude', 'edmPlaceLongitude', 'country', 'dataProvider', 'dcCreator']:
30
- myquery_df[col] = myquery_df[col].apply(extract_single)
31
-
32
- myquery_df['edmPlaceLatitude'] = pd.to_numeric(myquery_df['edmPlaceLatitude'], errors='coerce')
33
- myquery_df['edmPlaceLongitude'] = pd.to_numeric(myquery_df['edmPlaceLongitude'], errors='coerce')
34
-
35
- return myquery_df
36
 
37
  # Set up the Streamlit app
38
  st.title('Europeana Data Explorer')
@@ -46,7 +31,7 @@ if st.button('Fetch Data'):
46
  # Show loading message
47
  with st.spinner('Fetching data...'):
48
  # Get the data
49
- df = get_provider_data(provider_name)
50
 
51
  # Display the data
52
  st.subheader(f'Data from {provider_name}')
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import geopandas as gpd
4
  import folium
5
  from streamlit_folium import folium_static
6
  from pyeuropeana import apis
7
  from dotenv import load_dotenv
8
+ from utils import get_provider_data, aggregate_location_counts
9
  import os
10
 
11
  # Load environment variables
 
16
  st.error("EUROPEANA_API_KEY is not set in the environment variables. Please set it and restart the app.")
17
  st.stop()
18
 
19
+ # Load world map dataset
20
+ world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  # Set up the Streamlit app
23
  st.title('Europeana Data Explorer')
 
31
  # Show loading message
32
  with st.spinner('Fetching data...'):
33
  # Get the data
34
+ df = get_provider_data(provider_name, world)
35
 
36
  # Display the data
37
  st.subheader(f'Data from {provider_name}')
utils.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def get_provider_data(provider_name, world_gdf, rows=1000):
2
+ """
3
+ Query Europeana API for a specific data provider and return a processed DataFrame.
4
+
5
+ Args:
6
+ provider_name (str): Name of the data provider to query
7
+ world_gdf (GeoDataFrame): World map GeoDataFrame for spatial join
8
+ rows (int): Number of rows to retrieve (default 1000)
9
+
10
+ Returns:
11
+ pandas.DataFrame: Processed DataFrame with the queried data, including object location
12
+ """
13
+ # Query the Europeana API
14
+ myquery = apis.search(
15
+ query='pl_wgs84_pos_lat:(*)',
16
+ qf=f'DATA_PROVIDER:"{provider_name}"',
17
+ rows=rows
18
+ )
19
+
20
+ # Create initial DataFrame
21
+ myquery_df = pd.DataFrame(myquery["items"], columns=['edmPlaceLatitude', 'edmPlaceLongitude', 'id', 'country', 'dataProvider', 'dcCreator'])
22
+
23
+ # Function to extract single value from list or return original value
24
+ def extract_single(x):
25
+ return x[0] if isinstance(x, list) and len(x) > 0 else x
26
+
27
+ # Apply extraction to relevant columns
28
+ for col in ['edmPlaceLatitude', 'edmPlaceLongitude', 'country', 'dataProvider', 'dcCreator']:
29
+ myquery_df[col] = myquery_df[col].apply(extract_single)
30
+
31
+ # Convert latitude and longitude to float type
32
+ myquery_df['edmPlaceLatitude'] = pd.to_numeric(myquery_df['edmPlaceLatitude'], errors='coerce')
33
+ myquery_df['edmPlaceLongitude'] = pd.to_numeric(myquery_df['edmPlaceLongitude'], errors='coerce')
34
+
35
+ # Create a GeoDataFrame from the DataFrame
36
+ gdf = gpd.GeoDataFrame(
37
+ myquery_df,
38
+ geometry=gpd.points_from_xy(myquery_df.edmPlaceLongitude, myquery_df.edmPlaceLatitude),
39
+ crs="EPSG:4326"
40
+ )
41
+
42
+ # Perform spatial join
43
+ gdf_with_country = gpd.sjoin(gdf, world_gdf[['geometry', 'name']], how='left', op='within')
44
+
45
+ # Add the new column to the original DataFrame
46
+ myquery_df['object_location'] = gdf_with_country['name']
47
+
48
+ # Fill NaN values (points that don't fall within any country) with "Unknown"
49
+ myquery_df['object_location'] = myquery_df['object_location'].fillna("Unknown")
50
+
51
+ return myquery_df
52
+
53
+ def aggregate_location_counts(df):
54
+ """
55
+ Aggregate the data by object_location and get counts.
56
+
57
+ Args:
58
+ df (pandas.DataFrame): DataFrame containing 'object_location' column
59
+
60
+ Returns:
61
+ pandas.DataFrame: DataFrame with object locations and their counts, sorted by count
62
+ """
63
+ location_counts = df['object_location'].value_counts().reset_index()
64
+ location_counts.columns = ['object_location', 'count']
65
+ return location_counts.sort_values('count', ascending=False)