Spaces:
Runtime error
Runtime error
seyia92coding
commited on
Commit
•
524a705
1
Parent(s):
984b6e1
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""HS_Text-based_Recom_Metacritic.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1MmWRwRJT04GVAO2SKCpwSqQ2bWghVGtQ
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
!pip install fuzzywuzzy
|
13 |
+
from fuzzywuzzy import fuzz
|
14 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
|
17 |
+
df = pd.read_csv("/content/Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8')
|
18 |
+
|
19 |
+
#Remove title from review
|
20 |
+
def remove_title(row):
|
21 |
+
game_title = row['Game Title']
|
22 |
+
body_text = row['Reviews']
|
23 |
+
new_doc = body_text.replace(game_title, "")
|
24 |
+
return new_doc
|
25 |
+
|
26 |
+
df['Reviews'] = df.apply(remove_title, axis=1)
|
27 |
+
#drop redundant column
|
28 |
+
df = df.drop(['Unnamed: 0'], axis=1)
|
29 |
+
|
30 |
+
df.dropna(inplace=True) #Drop Null Reviews
|
31 |
+
|
32 |
+
# Instantiate the vectorizer object to the vectorizer variable
|
33 |
+
#Minimum word count 2 to be included, words that appear in over 70% of docs should not be included
|
34 |
+
vectorizer = TfidfVectorizer(min_df=2, max_df=0.7)
|
35 |
+
|
36 |
+
# Fit and transform the plot column
|
37 |
+
vectorized_data = vectorizer.fit_transform(df['Reviews'])
|
38 |
+
|
39 |
+
# Create Dataframe from TF-IDFarray
|
40 |
+
tfidf_df = pd.DataFrame(vectorized_data.toarray(), columns=vectorizer.get_feature_names())
|
41 |
+
|
42 |
+
# Assign the game titles to the index
|
43 |
+
tfidf_df.index = df['Game Title']
|
44 |
+
|
45 |
+
# Find the cosine similarity measures between all game and assign the results to cosine_similarity_array.
|
46 |
+
cosine_similarity_array = cosine_similarity(tfidf_df)
|
47 |
+
|
48 |
+
# Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns.
|
49 |
+
cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index)
|
50 |
+
|
51 |
+
# Print the top 5 rows of the DataFrame
|
52 |
+
# cosine_similarity_df.head()
|
53 |
+
|
54 |
+
# # Find the values for the game Batman: Arkham City
|
55 |
+
# cosine_similarity_series = cosine_similarity_df.loc['Batman: Arkham City']
|
56 |
+
|
57 |
+
# # Sort these values highest to lowest
|
58 |
+
# ordered_similarities = cosine_similarity_series.sort_values(ascending=False)
|
59 |
+
|
60 |
+
# # Print the results
|
61 |
+
# print(ordered_similarities)
|
62 |
+
|
63 |
+
# create a function to find the closest title
|
64 |
+
def matching_score(a,b):
|
65 |
+
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
|
66 |
+
return fuzz.ratio(a,b)
|
67 |
+
# exactly the same, the score becomes 100
|
68 |
+
|
69 |
+
#Convert index to title_year
|
70 |
+
def get_title_from_index(index):
|
71 |
+
return df[df.index == index]['Game Title'].values[0]
|
72 |
+
|
73 |
+
# A function to return the most similar title to the words a user type
|
74 |
+
# Without this, the recommender only works when a user enters the exact title which the data has.
|
75 |
+
def find_closest_title(title):
|
76 |
+
#matching_score(a,b) > a is the current row, b is the title we're trying to match
|
77 |
+
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index
|
78 |
+
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~]
|
79 |
+
closest_title = get_title_from_index(sorted_leven_scores[0][0])
|
80 |
+
distance_score = sorted_leven_scores[0][1]
|
81 |
+
return closest_title, distance_score
|
82 |
+
# Bejeweled Twist, 100
|
83 |
+
|
84 |
+
find_closest_title('Batman Arkham Knight')
|
85 |
+
|
86 |
+
"""# Build Recommender Function
|
87 |
+
|
88 |
+
Our recommender function will take in two inputs. The game title and the keyword exclusion. The keyword exclusion was added when I realised that the recommendations were returning a lot of DLCs and sequels which isn't a very useful recommender.
|
89 |
+
|
90 |
+
|
91 |
+
By combining everything we've done from building the user profile onwards we will pull out the Top 5 games we want to recommend.
|
92 |
+
|
93 |
+
|
94 |
+
1. Text Match the closest title in the dataset
|
95 |
+
2. Assign number for the final ranking
|
96 |
+
3. Create your user profile based on previous games
|
97 |
+
4. Create TFIDF subset without previously mentioned titles
|
98 |
+
5. Calculate cosine similarity based on selected titles and convert back into DataFrame
|
99 |
+
6. Sort DataFrame by similarity
|
100 |
+
7. Return most similarity game titles that don't contain keyword
|
101 |
+
"""
|
102 |
+
|
103 |
+
def recommend_games(game1, game2, game3, keyword1, keyword2, keyword3, max_results):
|
104 |
+
#Insert closest title here
|
105 |
+
title1, distance_score1 = find_closest_title(game1)
|
106 |
+
title2, distance_score2 = find_closest_title(game2)
|
107 |
+
title3, distance_score3 = find_closest_title(game3)
|
108 |
+
#Counter for Ranking
|
109 |
+
number = 1
|
110 |
+
print('Recommended because you played {}, {} and {}:\n'.format(title1, title2, title3))
|
111 |
+
|
112 |
+
list_of_games_enjoyed = [title1, title2, title3]
|
113 |
+
games_enjoyed_df = tfidf_df.reindex(list_of_games_enjoyed)
|
114 |
+
user_prof = games_enjoyed_df.mean()
|
115 |
+
|
116 |
+
tfidf_subset_df = tfidf_df.drop([title1, title2, title3], axis=0)
|
117 |
+
similarity_array = cosine_similarity(user_prof.values.reshape(1, -1), tfidf_subset_df)
|
118 |
+
similarity_df = pd.DataFrame(similarity_array.T, index=tfidf_subset_df.index, columns=["similarity_score"])
|
119 |
+
|
120 |
+
# Sort the values from high to low by the values in the similarity_score
|
121 |
+
sorted_similarity_df = similarity_df.sort_values(by="similarity_score", ascending=False)
|
122 |
+
|
123 |
+
# Inspect the most similar to the user preferences
|
124 |
+
print("Without Keywords Exclusions:")
|
125 |
+
print(sorted_similarity_df.head())
|
126 |
+
print("\n")
|
127 |
+
print("With Keywords Exclusions:\n ")
|
128 |
+
|
129 |
+
number = 0
|
130 |
+
rank = 1
|
131 |
+
|
132 |
+
for n in sorted_similarity_df.index:
|
133 |
+
if rank <= max_results:
|
134 |
+
if keyword1.lower() not in n.lower() and keyword2.lower() not in n.lower() and keyword3.lower() not in n.lower():
|
135 |
+
print("#" + str(rank) + ": " + n + ", " + str(round(sorted_similarity_df.iloc[number]['similarity_score']*100,2)) + "% " + "match")
|
136 |
+
number+=1
|
137 |
+
rank +=1
|
138 |
+
else:
|
139 |
+
continue
|
140 |
+
|
141 |
+
|
142 |
+
recommend_games('Mortal Kombat', 'Street Fighter', 'Overwatch', 'Kombat', 'Fighter', 'Overwatch', 5)
|
143 |
+
|
144 |
+
!pip install gradio
|
145 |
+
|
146 |
+
import gradio as gr
|
147 |
+
|
148 |
+
recommender_interface = gr.Interface(fn=recommend_games,
|
149 |
+
inputs=["text","text","text","text","text","text", gr.inputs.Slider(1, 20, step=1)],
|
150 |
+
title="Text-based Recommendation Engine for Video Games",
|
151 |
+
description="""This is a Recommendation Engine based on the review texts of Metacritic critics for games between 2011-2019.
|
152 |
+
You need to enter 3 games you've enjoyed playing followed by 3 keywords from those game titles so that I can avoid recommending the same games to you.""",
|
153 |
+
examples= [['Mortal Kombat', 'Street Fighter', 'Overwatch', 'Kombat', 'Fighter', 'Overwatch', 5],
|
154 |
+
["Batman Arkham Knight","Dying Light","Left 4 Dead","Batman","Dying","Left", 10],
|
155 |
+
["Mario Kart","Zelda","Final Fantasy","Mario","Zelda","Final", 7]],
|
156 |
+
outputs=["dataframe"])
|
157 |
+
|
158 |
+
recommender_interface.launch(debug=True)
|